
WINTER LAKE PHASE III PROJECT PROJECT ACTIONS

Designs and Yardage Calculations

Prepared by

Christopher W. Claire Oregon Dept. of Fish and Wildlife Habitat Protection Biologist Charleston, OR

Fred Messerle Beaver Slough Drainage District Manager Coquille, OR

Caley Sowers Coos Soil and Water Conservation District District Manager Coquille, OR

Introduction

The "Winter Lake" land area is a distinct river adjacent floodplain west of Coquille Oregon (Figure 1). The portion that is east and south of North Bank Lane and south of Hwy 42 and bordered by the Coquille River on the south is ~1,873 acres in size. Historically the acres of this unique valley floodplain that lie below elevation 8.0ft NAVDD88 were subjected to regular tidal inflow and outflow. In 1906-1907 the Beaver Slough Drainage District (BSDD; Figure 2) was formed and the Coaledo Drainage District (CDD; Figure 2) some years thereafter. These drainage districts provided social and financial framework facilitating construction of canal networks and installation of large tidegate systems for the properties to be drained. The BSDD installed tidegates in 1908-1909 allowed for drainage of 1,700 acres and the CDD installed the Beaver Creek tidegate that allowed for drainage of the remainder. The lands prior to conversion to pastureland were forested with wetland tree species with a highly dendritic tidal channel network. As part of the land alterations, interior berms were constructed along pasture and property boundaries with elevation. The land area ownership was originally comprised of multiple individuals and entities and in the early years and land use varied with cultivation of some crops and extensive hay production on higher pastures. Currently the primary use is pastureland grazing and ownership has been greatly consolidated.

In 2017 a largescale restoration project developed by the BSDD, Oregon Department of Fish and Wildlife (ODFW), and The Nature Conservancy (TNC) was implemented in the BSDD, where the four legacy 8.0ft corrugated metal culverts with associated top-hinged wooden tidegates connecting BSDD lands to the Coquille River were replaced with the C3P project (Phase I). The C3P project consisted of construction of seven 10.0x8.0ft concrete box culverts and associated vertical slide-gates (VSFTG) and side-hinged aluminum tidegates (Figure 2). In addition, an access road was rebuilt from Hwy 42 and from North Bank Lane, with associated bridges to provide access across existing legacy canals to serve this infrastructure. In 2018 restoration actions (Phase II) installed 31,000ft of sinuous channel on properties upstream of the C3P tidegate referred to as "Unit 2" lands and hydrology was returned to more historical condition within Unit 2 using the Muted Tidal Regulator (MTR) effects that were possible with the new C3P vertical slide-gates.

Upstream of the new C3P tidegate, in Units 1 and 3 at connection of interior pasture channels with main canals in the BSDD and CDD along Beaver Creek are 42 undersized culverts with a high prevalence in the 2.0-3.0 diameter range. These culverts greatly underserve the tidal inflow/outflow capacity of the new C3P tidegate. Additionally, the old linear field drainage channels were originally laid out with little attention to microtopography, often on property and or pasture boundaries. The Winter Lake Phase III project is proposing to replace the remaining 42 interior culverts and old style top-hinged tidegates in Units 1, 3, and pastures along Beaver Creek with 38 appropriately sized culverts. Upstream of the new culverts within pastures the project will construct on-grade channels that meet the precipitation hydrology as well as the tidal hydrology of the landscape and the Beaver Slough Drainage District (BSDD) Water Management Plan (DWMP). Existing engineering tools (USGS Streamstats) and engineering culvert capacity information were utilized to develop culvert and channel sizing that meets or exceeds the site hydrology and fish passage guidelines for both Federal and State jurisdictions. The project has been designed: 1). To develop channel networks that mimic historical condition, on grade and sufficient capacity; 2). Channel networks that provide for transport of sediments from reconstructed/constructed channels through proper construction design, management of flows, and time zero attention to locations where vegetation needs removed.

The C3P tidegates are able to be open and allow for inflow for a longer period of time, while not exceeding interior pasture management water elevation goals if the pasture channels have sufficient volume capacity. The project goals include creating interior "reservoir" capacity that will allow for a longer time of tidegate door openness on incoming tides at C3P prior to water elevations exceeding management goals. Greater time of C3P door openness is critical to allow for movement of native migratory fish into the project channel networks from the mainstem Coquille River. This reservoir capacity and greater overall inflow of water into the network and exchange on outflow with the Coquille River serves to mix waters and greatly improve water quality leading to a higher ecological function for native fish, wildlife, and livestock watering.

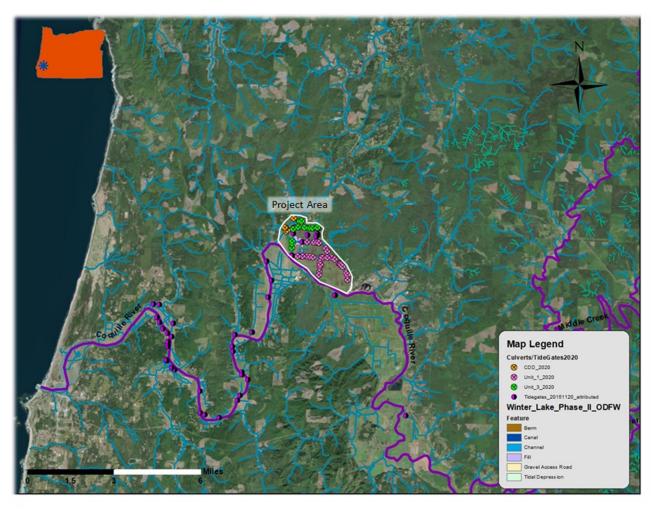


Figure 1. Coquille River estuary with demarcation of the Phase III project area at River Mile 21. 5.

The proposed "Winter Lake Phase III" project has been developed by a team of partners including BSDD, the Coos Soil and Water Conservation District (Coos SWCD), ODFW, and the Nature Conservancy (TNC). The project is designed to complement the BSDD C3P tidegate replacement project completed in 2017. The Phase III replacement of 42 existing undersized culverts and associated old style top-hinged tidegates with 38 new culverts, upgraded water control structures, and redesigned interior pasture channels are anticipated to maximize hydrologic connectivity in order to achieve a balance of fish/wildlife and pasture grass production. We are incorporating design that meets the ODFW Habitat Mitigation Policy guidelines and National Marine Fisheries Service (NMFS) Tidal Area Restoration Project (TARP) and Standard Local Operating Procedures for Endangered Species (SLOPES V) restoration guidelines.

Page 3 of 81

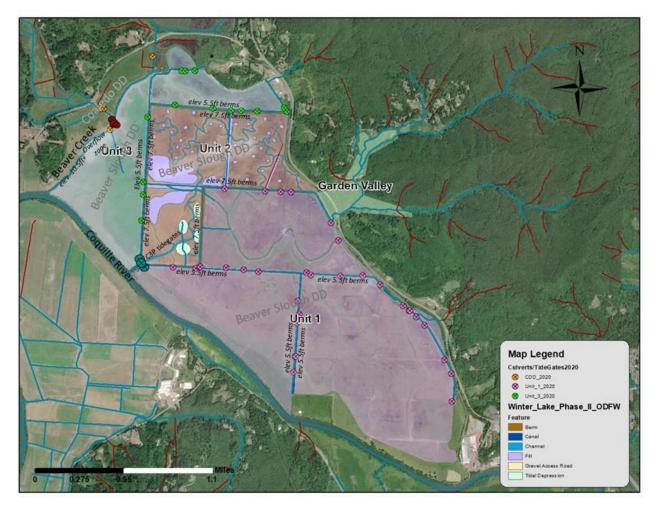


Figure 2. Winter Lake Phase I, II, and III project area and the land management Units within the Beaver Slough Drainage District; Rm 21.5 west of Coquille OR. Note two small parcels in the Coaledo Drainage District immediately to west/northwest of Unit 3 label are also in the Phase III project area.

The proposed Phase III project is designed to address insufficient hydrologic capacity and channel layout issues in Units 1 and 3 and two parcels in the CDD (*Figure 2*). The lands within Units 1 and 3 are managed with agricultural emphasis during spring, summer, and early fall months, however, are considered to have large unrealized capacity for juvenile coho rearing during the late fall, winter, and early spring. Water management to date within Units 1 and 3 has relied largely on channel networks that were installed in the early 1900's with subsequent modifications through time and maintenance dredging on roughly a 15yr interval to clean sediments that accumulated through time. This project as designed with installation of new channels that will provide adequate inflow/outflow capacity and reconstruct segments where sediments have accumulated to develop capacities that meet the project goals.

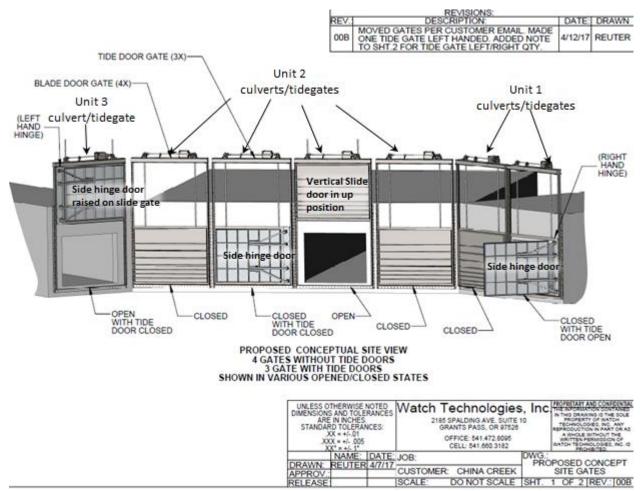


Figure 3. C3P tidegates and 10.0x8.0ft concrete box culverts configuration.

Key Hydrology/Habitat Issues

The Phase I C3P tidegate project in 2017 project alleviated hydrologic connectivity issues at the BSDD connection point to the mainstem Coquille River with main canals. In 2018 the Unit 2 "Restoration" project installed over 31,000ft of channel, connecting this 407 acre land area fully and addressing poor hydrologic connectivity, limited access for fish, fish stranding potential, and mosquito production risk. However, within Units 1 and 3 upstream of the C3P tidegate in the BSDD and the two parcels in the CDD, there remain numerous dysfunctional hydrological and habitat attributes for floodplain connectivity, wetland hydrologic function, and access for a number of native fish species including: Oregon Coast (OC) coho juveniles, fall Chinook juveniles, winter steelhead outmigrants, and coastal cutthroat trout that would otherwise use these locations seasonally. In addition, the poor hydrologic connectivity leads to poor functionality in regards to water management for pasture grazing production

Hydrological Issues:

There are a myriad of hydrologic connectivity issues within the project area fully discussed in the "Winter Lake Phase III Hydrologic Assessment" document. The primary concerns relate to culverts and associated channels that do not properly deliver or allow for outflow to "drained out" condition from the ~1,400 acres of pastureland below elevation 8.0ft in the BSDD and CDD project areas. Several of the primary issues from the Hydrologic Assessment are listed below:

- <u>Channel Discontinuity</u>: Discontinuity of channel networks due to construction of linear networks in 1908-1909 that redirected flow from the historical natural hydrologic flow paths. This results in the inability for tidal inflow/outflow to move into and from the floodplain pastures properly.
- Insufficient Fish Access: Insufficient interior channel network density/acre and average channel depths in Units 1 and 3 to provide access routes for juvenile fish to feed and find sufficient refugia depth. This condition results in very limited use of large portions of the floodplain by juvenile Oregon Coast coho. The interior pasture elevations in Units 1 and 3 is just over 3.0ft. If there is <18" of water on pastures and channels are distant from a location, coho will not move overland to potential feeding areas. The distance coho will move is related to depth until around 3.0ft, where they will move widely. At 3.0ft of depth the overall average water elevation in Units 1 and 3 is around elevation 6.0ft, which is on the majority of years a small portion of the November to April time period when coho are present. Increased channel networks will allow for substantively increased use of available habitat as coho penetrate through channel networks into interior pasturelands and feed adjacent to channels when water is at depths under 3.0ft.
- <u>Restriction of Tidal Flow:</u> Undersized culverts connecting to the main canals within Units 1 and 3 and the CDD pastures that restrict proper tidal/flood-flow and underserve hydrologic connectivity/irrigation needs in the period when salmonid fish would use the habitats and pasture production months.
- <u>Top-Hinged Tidegates</u>: Top-hinged tidegates on the existing interior culverts upstream of the C3P tidegates that are difficult to manage in the open position. This results in restriction of fish movements from the canals into pasture floodplain channels where food availability is higher and competition with non-native fish lower.
- <u>Channel Grades</u>: Channel networks that were not constructed on-grade and thus do not allow for sediments to be transported properly, resulting in premature accumulation, limited connectivity for fish movement, and poor drainage for landowners. Limited excavation/maintenance through time to compensate for the poor sediment transport capacity of these historical designs has led to sediment accumulation restricting inflow/outflow of these interior channels. Reconstruction or new construction is now needed to achieve the desired capacity and functionality.
- <u>High Culvert Invert</u>: Culverts were in many locations installed with an invert elevation inappropriately high, which results in a condition where pasture channel networks at early winter water elevation levels are disconnected from main canals resulting in delayed ability for fish to enter the floodplain and resultant increased potential for stranding and predation.
- <u>Poor Sediment Transport</u>: The lack of proper sediment transport has facilitated establishment of aquatic vegetation in existing networks that further restricts inflow/outflow and the ability to meet goals for moving water into the landscape for fish passage and off of the landscape for pasture management/forage production.

Methodology for Proposed Actions

<u>Culvert Replacement</u>: The project will implement replacement of 38 of the existing 42 undersized pasture channel culverts and elimination of 4. At one location, where the Messerle pasture road accesses the floodplain from Hwy 42 a culvert will be replaced with a bridge (*Figure 4*). The remaining four culverts with associated tidegates will be removed and consolidated within the remaining reconstructed 38 channel networks. The location of entry for six of these pasture channels and associated culverts to main canals will be moved to more appropriately configure the network to landscape topography. Culverts will be primarily Advanced Drainage System (ADS) or High-density polyethylene (HDPE), to extend life of culverts.

Culvert Design/Materials

1). It is critical that culverts be installed with an invert elevation that provides for fish passage. Culverts will meet swim through conditions with continuous 20-50% backwatering that meets the ODFW and NMFS fish passage criteria.

2). Culverts will be installed with an invert elevation (-1.0 to 0.0ft NAVDD 88) that provide for both accommodation of inflow/outflow hydrology amplitudes, above criteria #1, and drainout of pastureland channels.

3). Culverts were sized in order to meet Hydrologic volumes for inflow/outflow (see Hydrologic Assessment) based on tidal regimes, the DWMP, and irrigation needs.

We have designed culvert sizing to meet ODFW and NMFS criteria based on the "Winter Lake Phase III Hydrologic Assessment." The low tide minimum elevations do not reach the minimums that are observed at the ocean due to riverbank damping of the tidal amplitude. Northwest Hydraulic Consultants water level logger data in the C3P tidegate Hydraulic Analysis noted that the minimum water elevations rarely fall below elevation +1.5ft. In order to accommodate inflow/outflow and meet Federal and State fish passage guidelines we have designed culvert inverts to be set from -1.0ft NAVDD 88 to 0.0ft elevation depending on the individual installation site. These elevation inverts will provide for proper depth to hydrologically connect channels. ADS, HDPE, and an in-development concrete pre-cast structure (Appendix A) will be installed on the project. Typical installation designs for culverts through berms is shown in Sheet 1.

<u>Water Control Structures</u>: The project is planning replacement of tidegates on the 38 interior culverts with either: a). Side-hinged aluminum tidegates (Appendix B); with door brace for managing in the door open position b). Water control slide/knife gates operated manually through screw drive and wheel (Appendix B); or c). Other water control structures such as baffles or louvered gates. The individual water control types will be operated similarly and open as prescribed under the BSDD DWMP. Several styles of water control structure are shown in Appendix A. These water control structures are generally connected to the culvert prior to installation and the culvert and water control structure are then installed as a unit.

<u>Channel Reconstruction/Channel Creation</u>: The Phase III project proposes reconfigure/reconstructing ~29,981ft or 5.7 miles of existing tidal channel (*Figures 5 and 6*) and creation of 74,670 ft or 14.1 miles of new tidal and tidal swale channels in Units 1 and 3 (*Figures 5, 6*). These channels will encompass lessons learned from Ni-Les'tun and Unit 2 restoration including using on-grade design and bank sloping that maximizes edge habitats in order to:

- Provide depth refugia for native salmonids in winter and native resident fish in summer months,
- Contribute to greater utilization of the project area by juvenile coho, through increasing channel distribution on the landscape and fish penetration into the floodplain.

• Provide adequate volume capacity for:

a). A hydrologic Connectivity relationship that more closely mimics water inflow/outflow management and capacity at the main C3P tidegate;
b). Capacity that adequately provides for rain and floodwater outflow/drainage below elevation 5.5ft; and
c). Capacity that provides for delivery of summar irrigation flows.

c). Capacity that provides for delivery of summer irrigation flows.

The yardage calculations for channel work (Sheets 1-17 and Tables 1, 2, and 3) were developed based on:

1). Use of the LiDAR elevation averaging to determine the pasture elevation average for a given channel

2). Use of the known invert elevation at the pasture channel connection point with the main existing canals to determine the depth of material that would be excavated.

3). Channels in a number of locations were designed with a different sloping in first 300ft for small/medium size channels and 500ft for large channels. This is demarcated in Sheets 3-17. Additionally, yardage calculations reflect greater depth in the initial 300/500ft due to invert elevations that are deeper in segments where channels enter pastures at connection points with canals.

4). Thin-spreading of excavated material to DSL/USACE approved 3.0" in average depth on pastures adjacent to channels will be the primary use of spoils. There will be some locations where suitable material for berm reconstruction excavated during channel construction will be identified and this material will be used in berm repair locations.

Note: All channel calculations were designed with a margin that tends to slightly overestimate yardages so as to fully provide impacts appropriately for the Oregon Department of State Lands (DSL) and U.S. Army Corps of Engineers (USACE) 404 Fill and Removal Permit. Thin spreading of spoils will mimic natural deposition from flood events that was eliminated from 1909-2017 and now has been partially restored through installation of the C3P tidegate and capacity to deliver winter floodwaters. Subsidence through time has contributed to pasture topography variability that currently complicates water management and contributes to fish stranding.

<u>Interior Berms</u>: Interior pasture berms will be reconstructed to elevation 5.5ft NAVDD88 in locations where they have degraded (*Figures 4, 5, and 6*). Spoils from channel construction will be used to bring these locations into functional condition in order to allow for individual pasture/landowner water management up to elevation 5.5ft. Initial reconstruction will be completed with placement of earth to elevation 6.0ft, which will allow for 6.0" of settling and usable long-term berm height of 5.5ft. Berm yardage calculations were developed using aerial imagery estimation of the length of repair in combination with ground truthing and then defined design (Figures 6 and 7; Sheets 1, 18, and 19, and Table 3).

Excavation of Sediments China Canal and Sections of Unit 1 Southeast Canal: The China Camp Creek canal has accumulated 3,675 cy's of sediment that has been transported to where the stream gradient reaches near 0.0% (Figure 6; Sheets 19-22). This segment of canal is critical for transport of China Camp Creek flow and drainage of the Garden Valley lands upstream of Hwy 42. A total of 3,675 cy's of silt/clay material will be excavated in the 1,262ft long work reach (Sheet 19) using a long reach excavator working from top of bank. Dewatering of the canal is not possible in the work area as the damage to aquatic resources would exceed impacts of excavation. The work will be completed on a low incoming tide in a period when water temperatures are above the level tolerable for salmonid fishes, as such they will not be in the work area. Working on low incoming tide will keep sediments that are generated in the active work area. Lamprey ammocoetes and other non-salmonid fishes that are entrained in the excavated material e.g. sticklebacks

and sculpin, will be salvaged as material is deposited in the pasture. Excavated material will be placed adjacent to the canal where it will be thin spread to a depth average of 3", (Table 3).

There is also another reach of the Unit 1 canal where a small slump has narrowed flow volume capacity in the Unit 1 canal on the southeastern leg (Figure 4). An excavator working from the top of bank will be utilized to remove this flow constriction. Sediments will be excavated and thin spread to an average depth of 3" in the pastures adjacent to the canal. The total cy's estimated for removal in this reach is 667cy (Sheet 21). The very southeast 904ft of the Unit 1 Canal has sediment accumulation of 1,333cy (Sheet 21) that will be removed. Finally, the northeast portion of the Wheeler Canal in an 840ft segment is in need of 1,116cy of excavation to reestablish proper hydrology and accommodate outflow from proposed culvert and channel upgrades (Sheet 22 and Table 3).

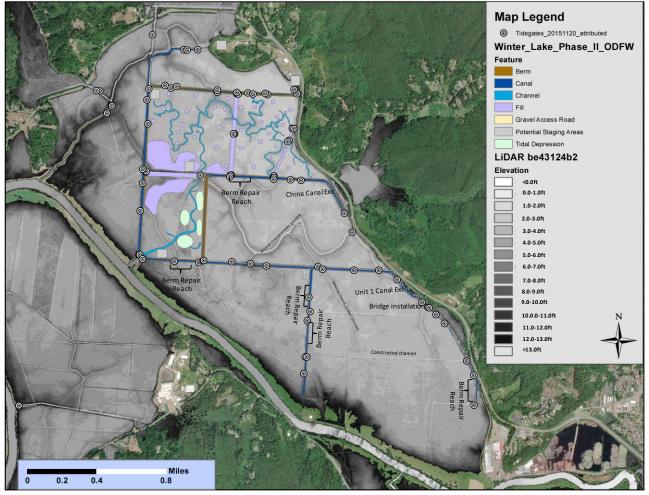


Figure 4. LiDAR elevational map and locations where berm reconstruction is needed. Grayscale depiction allows for historically installed linear pasture drainage channels to be visible.

<u>Habitat Uplift</u>: The Phase III project will incorporate a number of additional habitat uplift benefits. While these are not related to hydrology it is important to note that they will increase ecological functionality (Table 1 Appendix D) of the pasturelands and reduce the potential that channels will reaccumulate sediments. These actions are more fully addressed in the Phase III project DSL/USACE 404 fill and removal

permit. Proposed Phase III project actions that are designed to greatly enhance ecologic uplift include (Table 1 Appendix D):

1). Fencing or exclosures with skip planting along the first 500ft of large and medium channels that connect to main canals (Skip planting concepts Sheets 24-26 in Appendix C), however, access for machinery will be left in the planting design and layout if a return excavation is needed in specific small locations;

2). Channel construction bank sloping that will provide for extended life of channels and provide extensive edge feeding habitat for fish along channel banks;

3). Installation of channels into locations where the topography is low, water ponds, and currently fish become stranded;

4). Hydrologic bulbs (Figure 7) at the terminus of larger channel networks that provide a small basinal low area excavated to provide fish habitat in winter and channel flushing to move any accumulation of sediments from the channel network.

5). The channels will be designed with on grade construction, which will result in hydrology where sediment accumulation in the invert will be transported in perpetuity down networks into the main Coquille River with a greatly reduced or no long term need for repeated/substantial excavation.

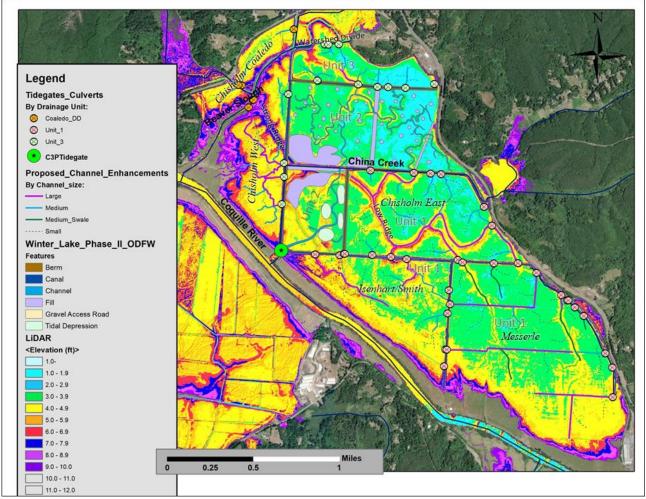
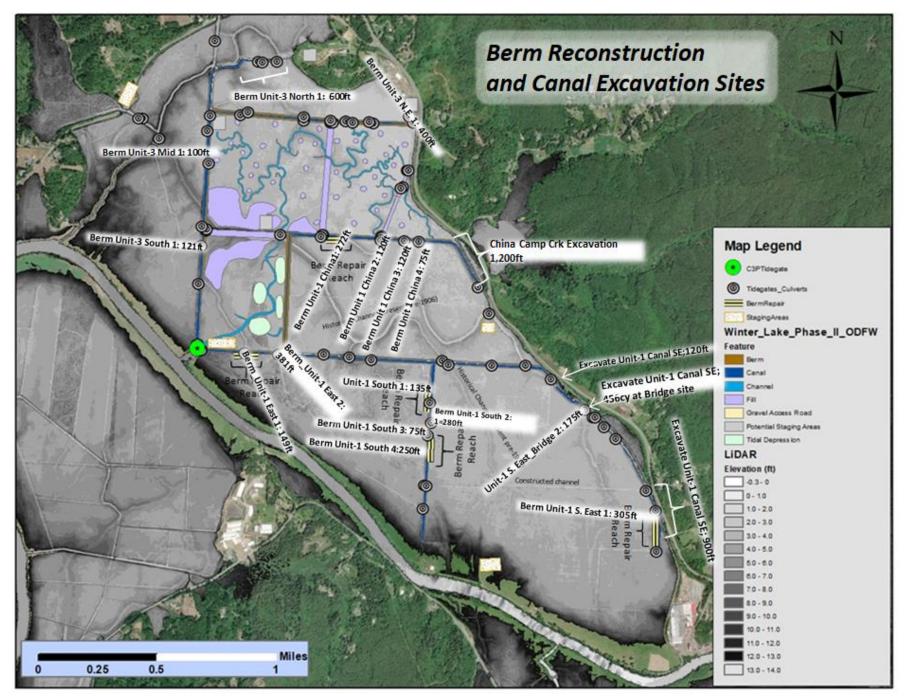



Figure 5. LiDAR elevational map of the Winter Lake Phase III project area with new proposed channels depicted. Lands above elevation 10ft allow for the aerial imagery to show through.

Figure 6. Phase III proposed channel reconstruction/construction depicted with LiDAR in grayscale.

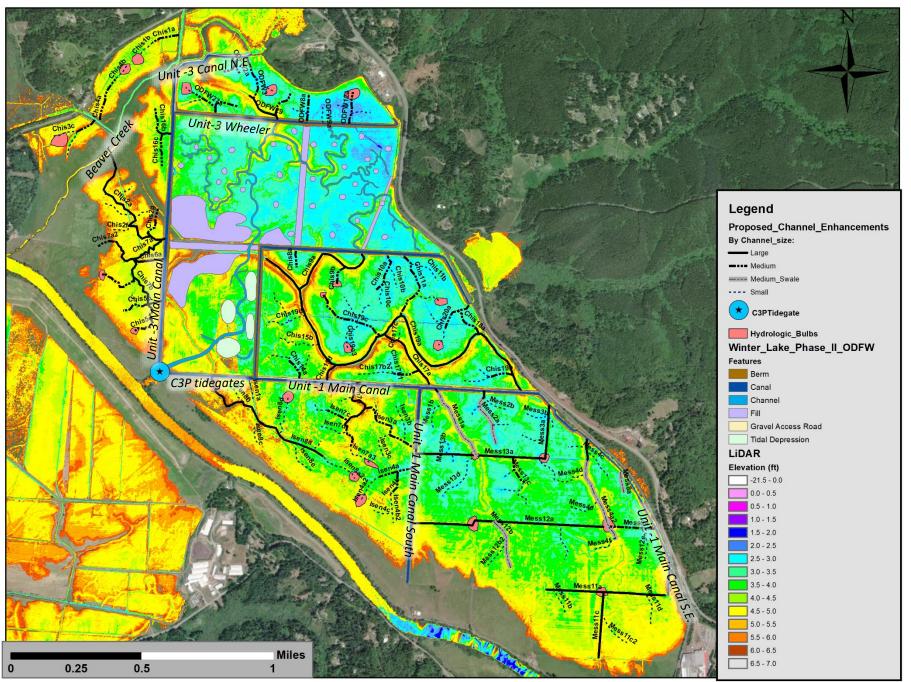


Figure 7. Reconstructed/New channel construction I.D. and configuration. **Note:** culvert I.D. is same as channel I.D.; Large and Medium channel connection locations with main canals are culvert replacement locations.

Unit		Chan		Acres_blw	Current	Culvert	100yr	Culvert_Cap% ±	Culvert_Size% ±
Number	CIS_ID	Size	Acres	10ft_elev	CulvrtSize_ft	Prop. (ft)	Flow Clvrt ¹	Prop Ovr 100yr ¹	Prop Ovr 100yr
Unit-3	Chis16	М	42.4	42.4	3.0	4.0	24	+598.8%	200.0%
Unit-3	ODFW27	М	23.0	23.0	4.0	4.0	24	+957.8%	200.0%
Unit-3	ODFW2	М	8.8	8.8	1.0	3.0	15	+1212.5%	240.0%
Unit-3	ODFW3	М	14.1	13.1	1.0	3.0	18	+756.8%	200.0%
Unit-3	ODFW29	L	11.9	9.56	None Present	4.0	15	+1851.2%	320.0%
Unit-3	ODFW8	М	12.3	7.6	2.0	4.0	18	+1791%	266.7%
Unit-3	ODFW9	М	6.8	4.0	1.0	3.0	12	+1569.2%	300.0%
Unit-3	Chis2	L	27.5	25.2	4.0	4.0	21	+801.1%	228.6%
CDD	Chis1	М	31.3	17.9	3.0	4.0	24	+703.8%	200.0%
CDD	Chis3	М	60.5	22.9	4.0	4.0	30	+364.1%	160.0%
CDD	Chis4	М	51.6	41.9	3.0	4.0	27	+426.9%	177.8%
Unit-3	Chis7	L	39.1	35.3	3.0	4.0	24	+563.4%	200.0%
Unit-3	Chis6	L	69.2	47.4	4.0	4.0	30	+318.3%	160.0%
Unit-3	Chis5	L	45.2	31.4	3.0	5.0	27	+860.5%	222.2%
Unit-1	lsen8	L	134.6	112.1	None Present	5.0	42	+289.0%	142.9%
Unit-1	lsen7	L	48.23	48.23	1.0	5.0	27	+806.4%	222.2%
Unit-1	lsen3	М	24.5	24.5	1.0	4.0	21	+899.1%	228.6%
Unit-1	lsen4	М	26.3	26.3	1.0	4.0	21	+837.6%	228.6%
Unit-1	lsen6	S	36.5	23.8	1.5	3.0	24	+292.3%	150.0%
Unit-1	Mess2	М	25.6	25.6	1.0	3.0	21	416.8%	171.4%
Unit-1	Mess3	М	49.0	49.0	1.5	4.0	27	449.2%	177.8%
Unit-1	Mess4	L	48.8	48.8	1.5	4.0	27	451.0%	177.8%
Unit-1	Mess8	М	11.4	11.4	1.5	4.0	15	2078.2%	320.0%
Unit-1	Mess9	М	17.0	17.0	2.0	4.0	18	1293.9%	266.7%
Unit-1	Mess11	М	199.3	162.0	2.0	5.0	48	195.1%	125.0%
Unit-1	Mess13	М	41.8	41.8	2.0	4.0	27	527.2%	177.8%
Unit-1	Mess12	М	177.2	137.6	2.0	5.0	42	219.5%	142.9%
Unit-1	Mess1	L	22.6	22.6	2.0	4.0	21	973.0%	228.6%
Unit-3	ODFW12	М	23.1	18.9	4.0	4.0	21	+1683.8%	228.6%
Unit-1	Chis8	М	9.1	9.1	2.0	4.0	15	+4274.2%	320.0%
Unit-1	Chis14	L	18.2	18.2	2.0	4.0	18	586.3%	266.7%
Unit-1	Chis15	L	38.1	38.1	2.0	4.0	24	+578.2%	200.0%
Unit-1	Chis9	L	20.5	20.5	2.0	5.0	21	+1897.3%	285.7%
Unit-1	Chis17	L	73.9	73.9	2.0	5.0	33	+526.3%	181.8%
Unit-1	Chis10	м	15.3	15.3	2.0	4.0	18	+1439.8%	266.7%
Unit-1	Chis11	м	26.3	26.3	2.0	4.0	21	+837.6%	228.6%
Unit-1	Chis20	м	26.1	26.1	2.0	3.0	21	+408.8%	171.4%
Unit-1	Chis19	L	38.5	38.5	4.0	6.0	24	+1591.4%	300.0%

Table 1. Winter Lake Phase III interior culvert location I.D.'s and pipes. Culverts installed at channel connections with main canals as denoted in Figures 7 and 8.

^{1).} Based on values from Table 6 Robison, George E., A. Mirati, and M. Allen 1999, also in Foltz et al. 2009

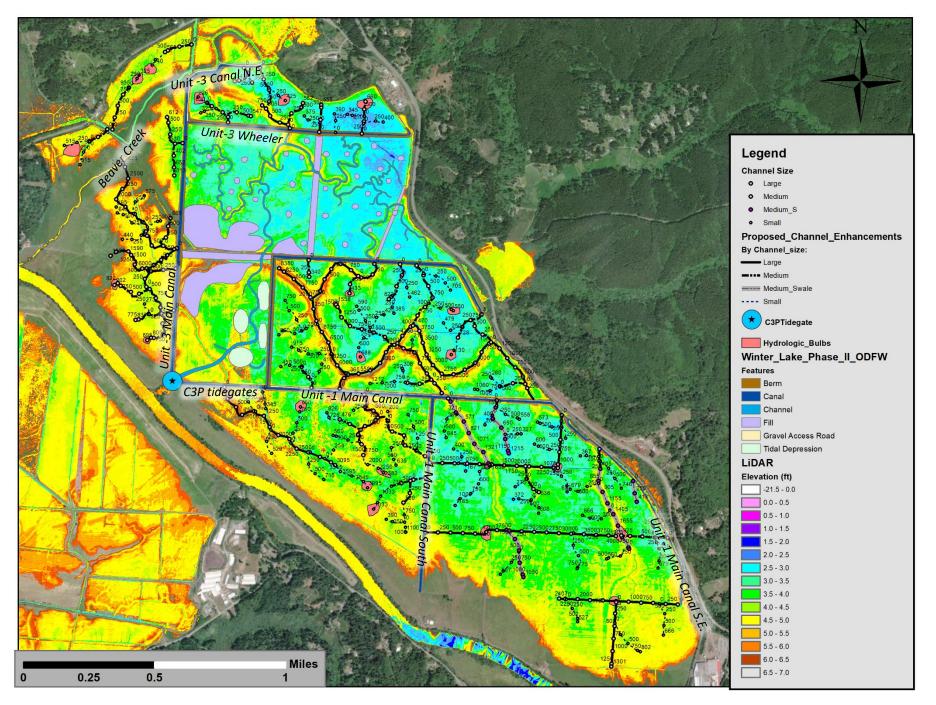
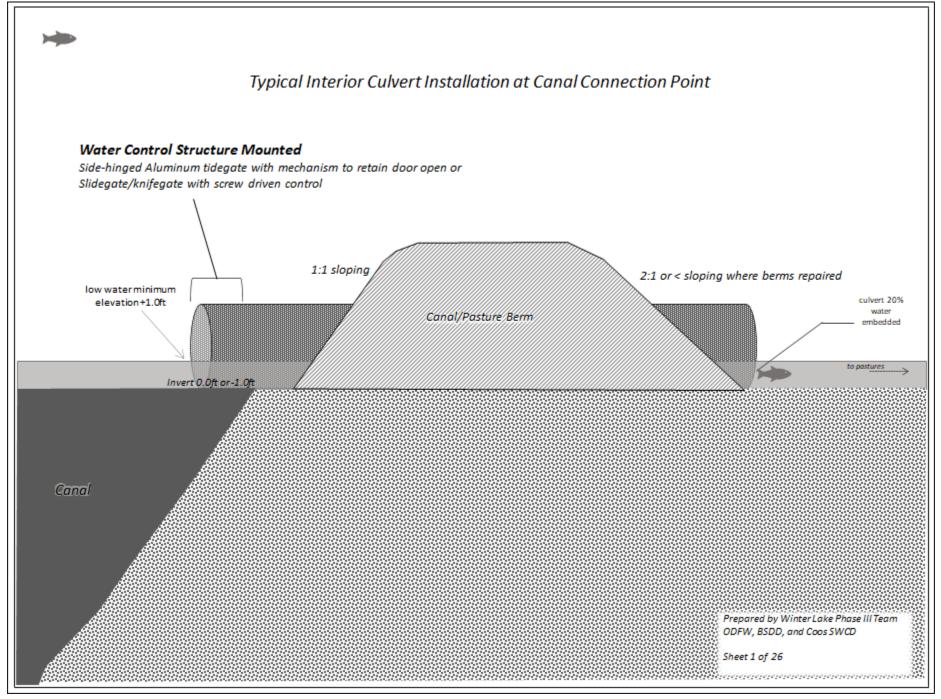
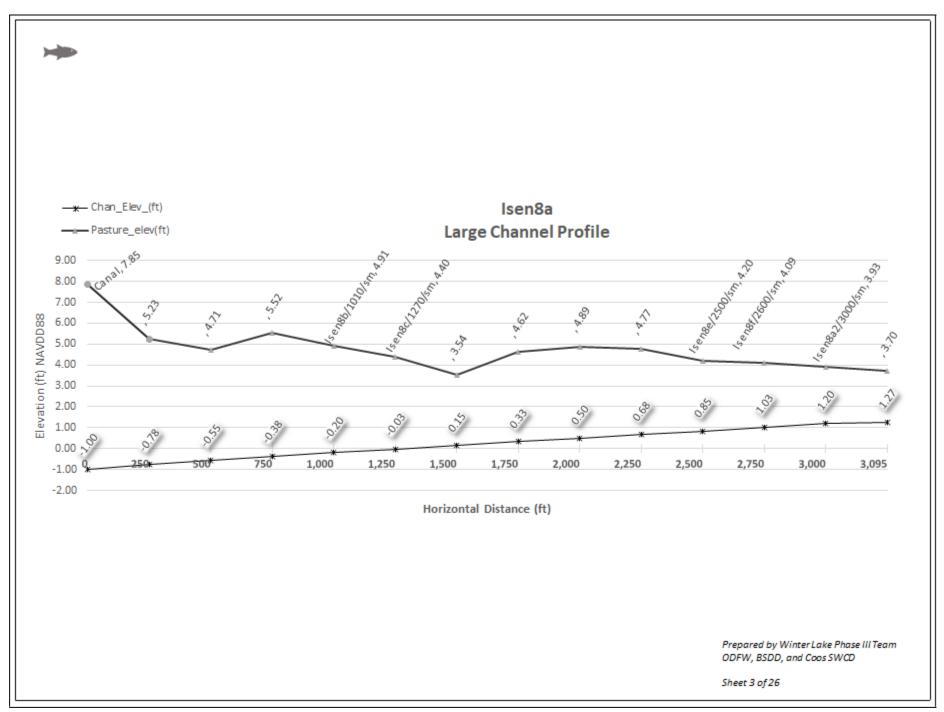



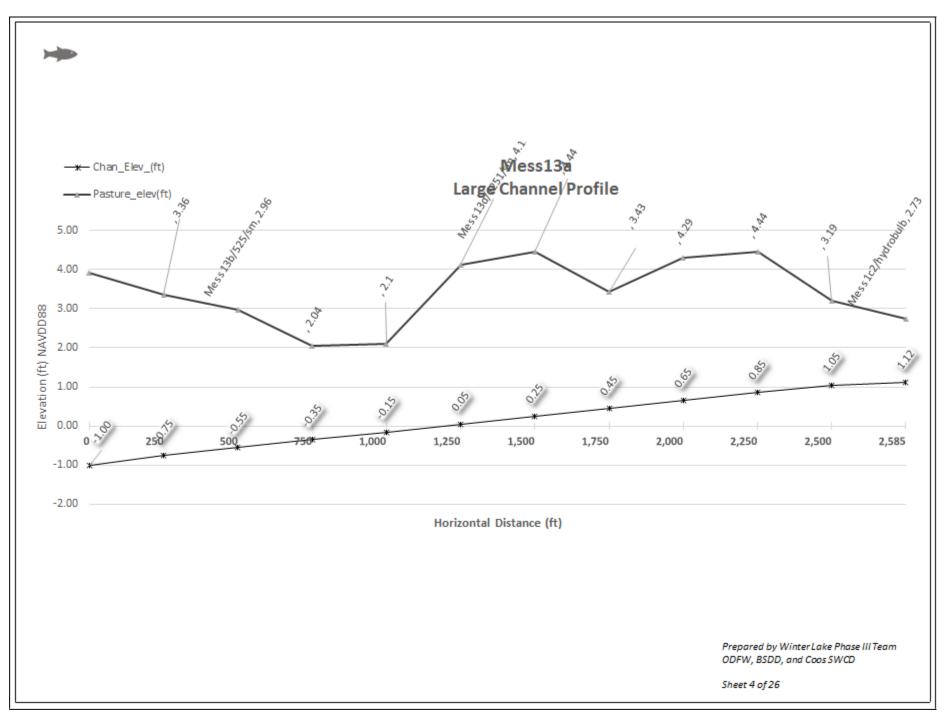
Figure 8. Reconstruct/New channel construction distance demarcation. **Note:** Channel connection locations with main canals are culvert replacement sites.

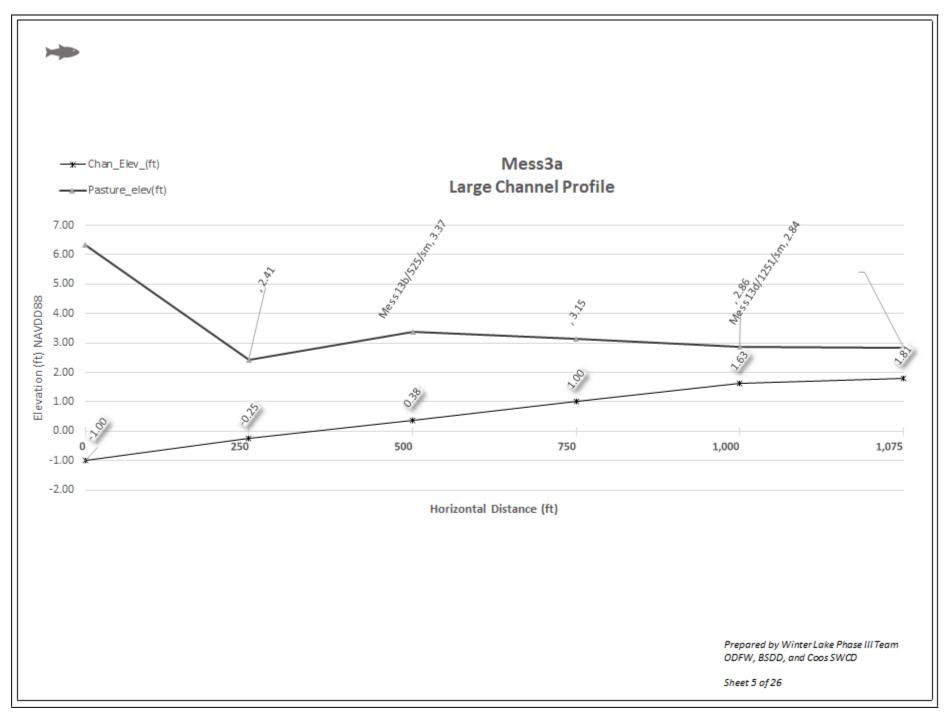
Page 14 of 81

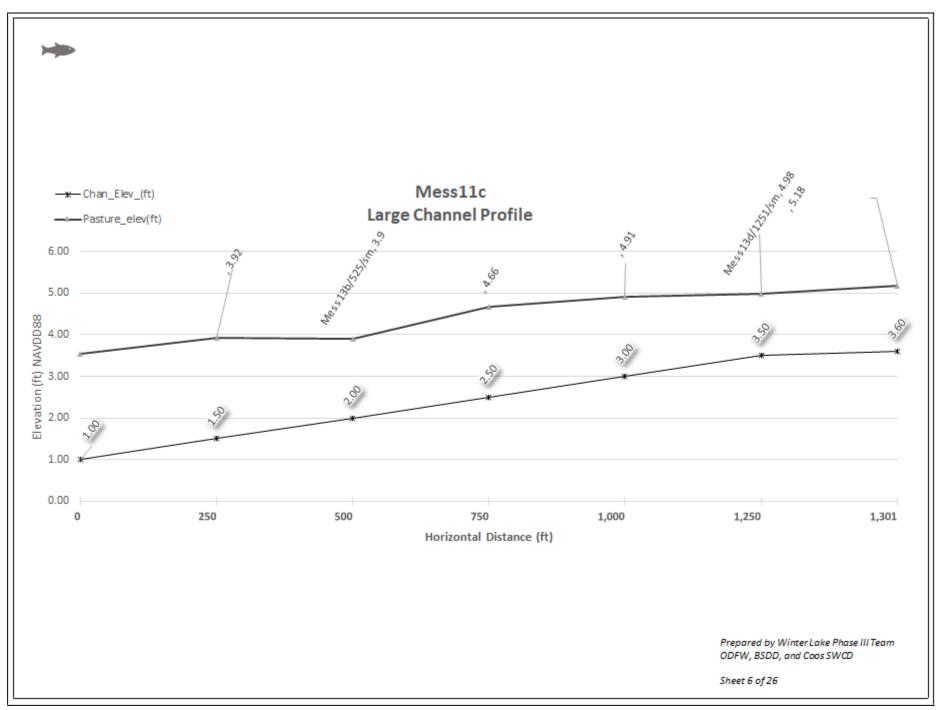
			CY/ft;	CY/ft;	Length x	Length x	
	Channel	Channel	First	First	CY/ft First	CY/ft First	Total
Chan_ID	Size (ft)	Length (ft)	500/300ft	500/300ft	500/300ft ¹	500/300ft ²	CY's
Chis7a	6	1,597	1.78	1.56	890	1,712	2,602
Chis7b	6	1,127	1.78	1.56	890	979	1,869
Chis7c	4	1,458	1.11	0.93	333	1,077	1,410
Chis5b	4	563	1.11	0.93	333	244	577
Chis5a	6	265	1.78	1.56	890		890
Chis2g	4	670	1.11	0.93	333	344	677
Chis2a	6	2,832	1.78	1.56	890	3,637	4,527
Chis2d	2	622	0.93	0.33	279	40	319
Chis7e	2	346	0.93	0.33	279	15	294
Chis2f	2	445	0.93	0.33	279	48	327
Chis6c	2	816	0.93	0.33	279	104	383
Chis5d	4	808	1.11	0.93	333	472	805
Chis7a2	4	645	1.11	0.93	333	321	654
Chis2b	2	201	0.93	0.33	279		279
Chis2c	2	476	0.93	0.33	279	58	337
Chis2e	2	309	0.93	0.33	279	3	282
Chis5f	2	270	0.93	0.33	279		279
Chis6a	6	606	1.78	1.56	890	165	1,055
Chis16c	4	658	0.93	0.93	279	333	612
Chis16a	6	152	1.78	1.56	534		534
Chis16b	4	612	1.11	0.93	333	290	623
Chis8a	4	337	1.11	0.93	333	34	367
Chis9a	6	1,978	1.78	1.56	890	2,305	3,195
Chis14a	4	504	1.11	0.93	333	4	337
Chis19c	4	1,488	1.11	0.93	333	1,105	1,438
Chis10a	4	826	1.11	0.93	333	489	822
Chis19c1	2	589	0.98	0.33	294	95	389
Chis11a	4	1,475	1.11	0.93	333	1,093	1,426
Chis15b	2	912	0.93	0.33	279	136	415
Chis14c	2	440	0.93	0.33	279	46	325
Chis15d	6	359	1.78	1.56	890	92	982
Chis19d	2	869	0.93	0.33	279	188	467
Chis20a	4	726	1.11	0.93	333	396	729
1. For Small and	Medium Channe			of deeper dpeth of e	excavation. If overall	((
2. If left blank th	en channel segm	ient <500/300ft in le	ngth				

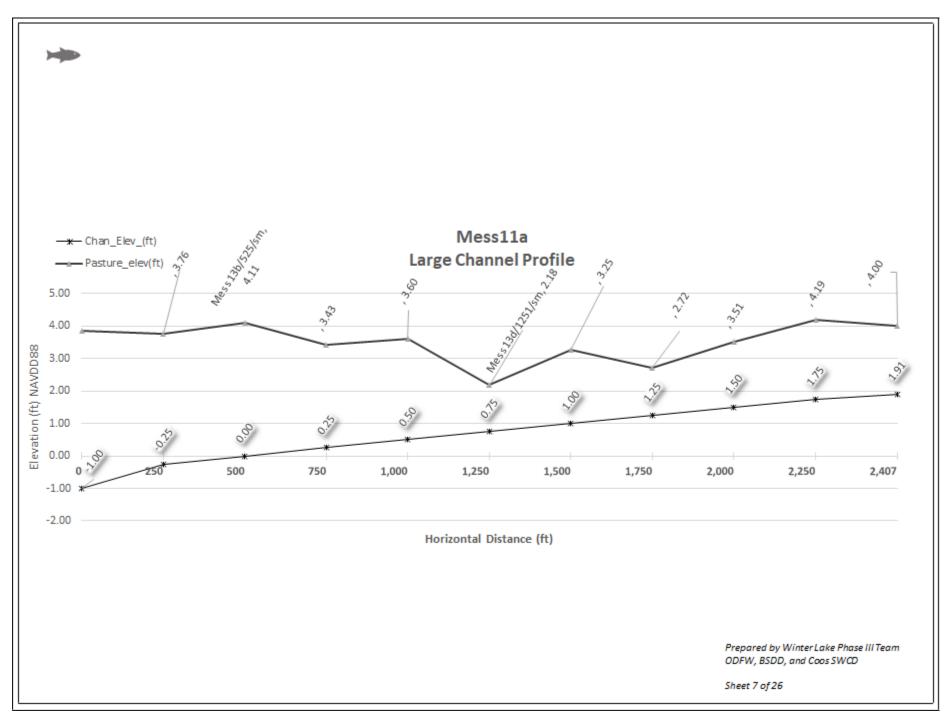
			CY/ft;	CY/ft;	Length x	Length x	
	Channel	Channel	First	First	CY/ft First	CY/ft First	Total
Chan_ID	Size (ft)	Length (ft)	500/300ft	500/300ft	500/300ft ¹	500/300ft ²	CY's
Chis11b	2	680	0.93	0.33	279	125	404
Chis20c	2	291	0.93	0.33	279		279
Chis20d	2	481	0.93	0.33	279	60	339
Chis19a	6	8,370	1.78	1.56	890	12,277	13,167
Chis14b	2	412	0.93	0.33	279	37	316
Chis17a	6	1,404	1.78	1.56	890	1,410	2,300
Chis17b	4	541	1.11	0.93	333	224	557
Chis17b1	2	303	0.93	0.33	279	1	280
Chis17b2	2	718	0.93	0.33	279	138	417
Chis17c	2	221	0.93	0.33	279		279
Chis19b	4	512	1.11	0.93	333	198	531
Chis19b1	2	281	0.93	0.33	279		279
Chis19b2	2	564	0.93	0.33	279	87	366
Chis18a	4	656	1.11	1.56	333	555	888
Chis19d1	2	746	0.93	0.33	279	147	426
Chis3a	4	445	1.11	0.93	333	135	468
Chis3b	2	517	0.93	0.33	279	72	351
Chis3c	2	516	0.93	0.33	279	71	350
Chis4a	4	932	1.11	0.93	333	587	920
Chis4b	2	338	0.93	0.33	279	12	291
Chis1a	4	563	1.11	0.93	333	245	578
Chis1b	2	377	0.93	0.93	279	71	350
lsen8a	6	3,097	1.78	1.56	890	4,051	4,941
lsen1a	2	341	0.93	0.33	279	14	293
Isen8d	2	732	0.93	0.33	279	143	422
lsen8c	2	526	0.93	0.33	279	75	354
lsen8e	2	714	0.93	0.33	279	137	416
lsen8f	2	253	0.93	0.33	279		279
lsen7a	6	1,238	1.78	1.56	890	1,152	2,042
lsen7a2	4	514	1.11	0.93	333	199	532
lsen7c	4	468	1.11	0.93	333	156	489
lsen7c1	4	347	0.93	0.33	279	16	295
Isen7d	2	565	0.93	0.33	279	87	366
lsen7b	2	252	0.93	0.33	279		279
	1				excavation. If overall I	ength <300ft	

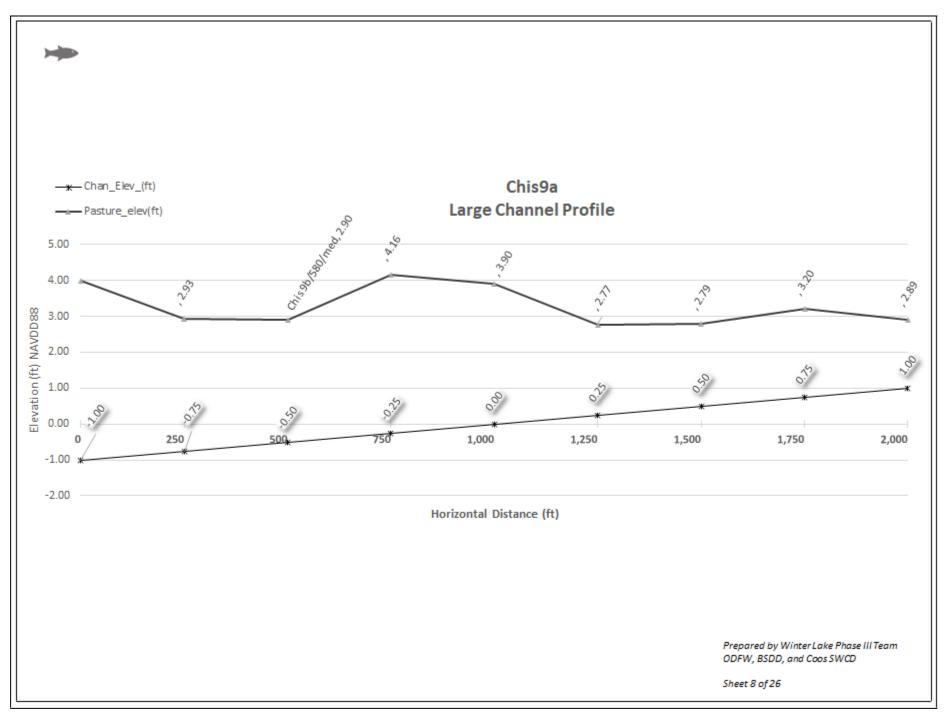

Table 2. Continued.

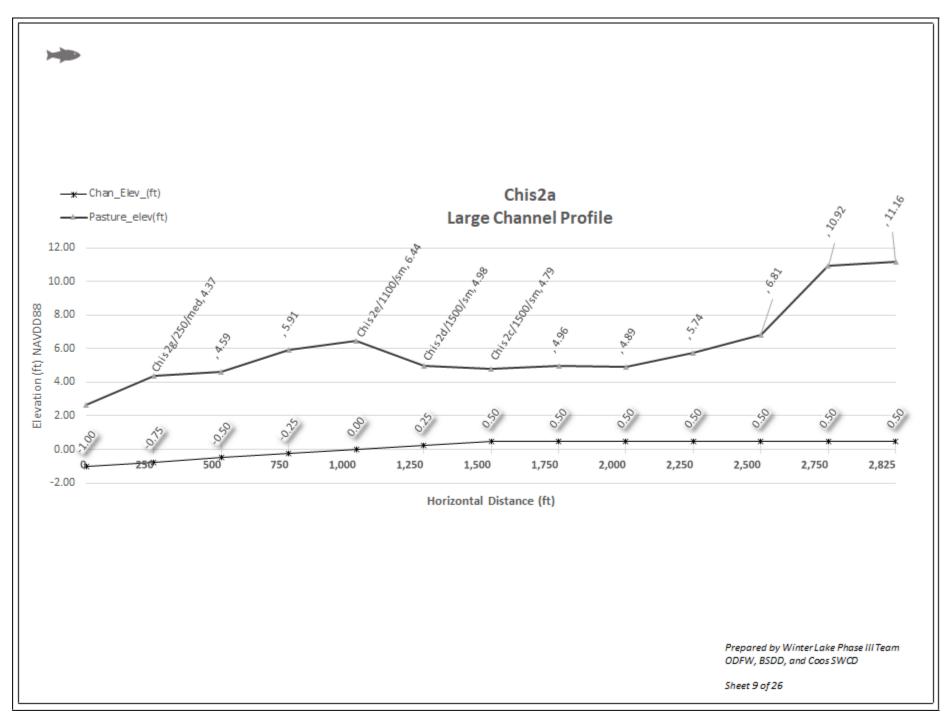

			CY/ft;	CY/ft;	Length x	Length x	
	Channel	Channel	First	First	CY/ft First	CY/ft First	Total
Chan_ID	Size (ft)	Length (ft)	500/300ft	500/300ft	500/300ft ¹	500/300ft ²	CY's
lsen7a3	2	468	0.93	0.33	279	55	334
lsen3a	4	1,464	1.11	0.93	333	1,082	1,415
lsen3c	2	622	0.93	0.33	279	106	385
lsen3b	2	767	0.93	0.33	279	154	433
lsen4a	4	706	1.11	0.93	333	378	711
lsen4b2	2	595	0.93	0.33	279	97	376
lsen4a2	2	559	0.93	0.33	279	86	365
lsen8a2	2	821	0.93	0.33	279	172	451
lsen4c	2	381	0.93	0.33	279	27	306
lsen4b	4	499	1.11	0.93	333	185	518
Mess13a	4	1,194	1.11	0.93	333	831	1,164
Mess1a	4	1,554	1.78	1.56	445	2,034	2,479
Mess12a	4	3,902	1.78	1.56	890	5,307	6,197
Mess1a2	4	Removed 2022	1.11	0.93	333		
Mess1b	4	638	0.93	0.33	279	112	391
Mess2a	4	1,052	1.11	0.93	333	699	1,032
Mess2d	2	320	0.93	0.33	279	7	286
Mess3d	4	585	0.93	0.33	279	94	373
Mess3a	4	1,072	1.78	1.56	890	892	1,782
Mess3b	2	559	1.11	0.33	333	86	419
Mess2c	2	266	0.93	0.33	279		279
Mess4a	6	402	1.78	1.56	890		890
Mess3c	2	277	0.93	0.33	279		279
Mess1e	2	880	0.93	0.33	279	191	470
Mess13b	2	406	0.93	0.33	279	35	314
Mess135 Mess11c	- 6	400 1,286	1.78	1.56	534	1,538	2,072
Mess11d	2	683	0.93	0.33	279	1,558	405
Mess11d Mess4d	2	662	0.93	0.33	279	120	399
Mess8a	2	424	1.11	1.56	333	120 193	526
Mess4c		736	0.93	0.33	279	193	423
Mess4c Mess9a	2 4	925	0.95 1.11	0.33	333	581	914
	4 2	925 541	0.93		279	80	359
Mess4f				0.33		ii	
Mess4e	2	661	0.93	0.33	279	119	398
Mess13c2	2	274	0.93	0.33	279	2.049	279
Mess11a	6	2,390	1.78	1.56 of deeper dpeth of e	890	2,948	3,838

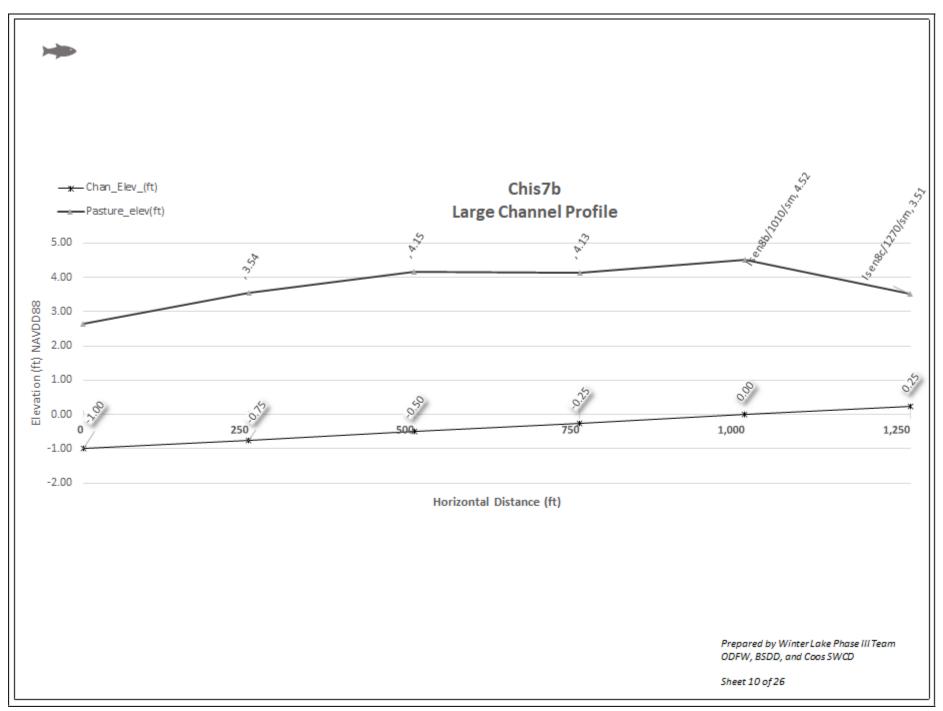

Table 2. Continued

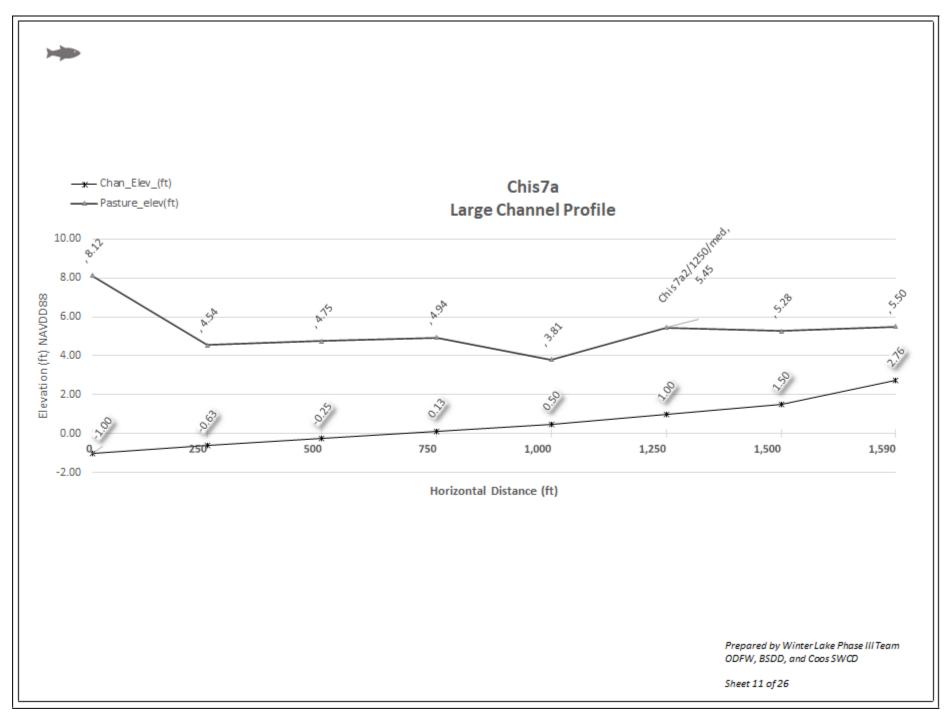

			CY/ft;	CY/ft;	Length x	Length x	
	Channel	Channel	First	First	CY/ft First	CY/ft First	Tota
Chan_ID	Size (ft)	Length (ft)	500/300ft	500/300ft	500/300ft ¹	500/300ft ²	CY's
Mess2b	2	368	0.93	0.33	279	22	30
Mess11b	2	540	0.93	0.33	279	79	35
Mess13c3	2	609	0.93	0.33	279	102	38
Mess13c3	2	362	0.93	0.33	279	20	29
Mess13c	2	627	0.93	0.33	279	108	38
Mess13d	2	618	0.93	0.33	279	105	384
Mess12d	2	277	0.93	0.33	279		27
Mess12e2	2	135	0.93	0.33	279		27
ODFW27a	4	618	1.11	0.93	333	296	62
ODFW27a2	2	230	0.93	0.33	279		279
ODFW27b	2	329	0.93	0.33	279	9	28
ODFW27b	4	547	1.11	0.93	333	230	56
ODFW2a	4	351	1.11	0.93	333	47	38
ODFW2b	4	342	1.11	0.93	333	39	37
ODFW3	4	905	1.11	0.93	333	563	89
ODFW29	6	775	1.78	1.56	890	429	1,31
ODFW3a	2	422	0.93	0.33	279		27
ODFW5a	4	589	1.11	0.93	333	268	60
ODFW8a	4	556	1.11	0.93	333	238	57
ODFW9a	2	387	0.93	0.33	279		27
ODFW12a	4	655	1.11	0.93	333	330	66
ODFW12b	2	403	0.93	0.33	279	34	313
ODFW12c	2	352	0.93	0.33	279	17	29
ODFW8b	2	372	0.93	0.33	279	24	30
Isen8b	2	491	0.93	0.33	279	63	34
Isen3d	2	198	0.93	0.33	279		27
Chis12b	2	440	0.93	0.33	279	46	32
Mess1c3	2	609	0.93	0.33	279	102	38
Mess1c4	2	362	0.93	0.33	279	21	30
Mess3b	2	585	0.93	0.33	279	94	37
Chis10b	2	457	0.93	0.33	279	52	33
Chis19c3	2	569	0.93	0.33	279	89	36
Chis10c	2	385	0.93	0.33	279	28	30
Chis19c2	2	419	0.93	0.33	279	39	31
Chis9b	4	433	1.11	0.93	333	124	45
Total Ft		99,781		Totals			110,81
	Miles	18.9					,

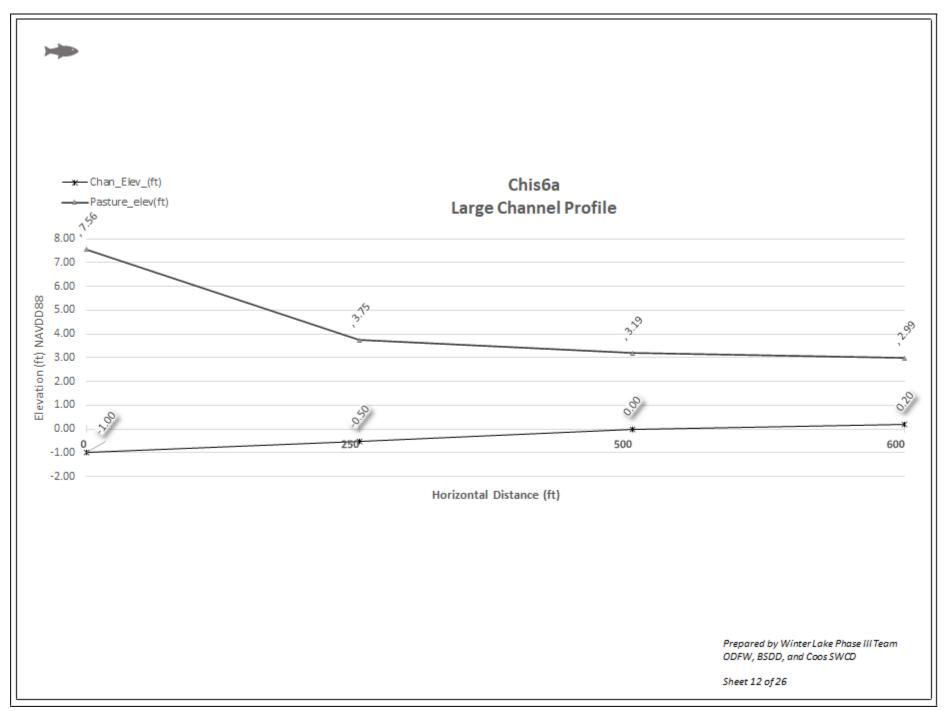

Table 2. Continued.

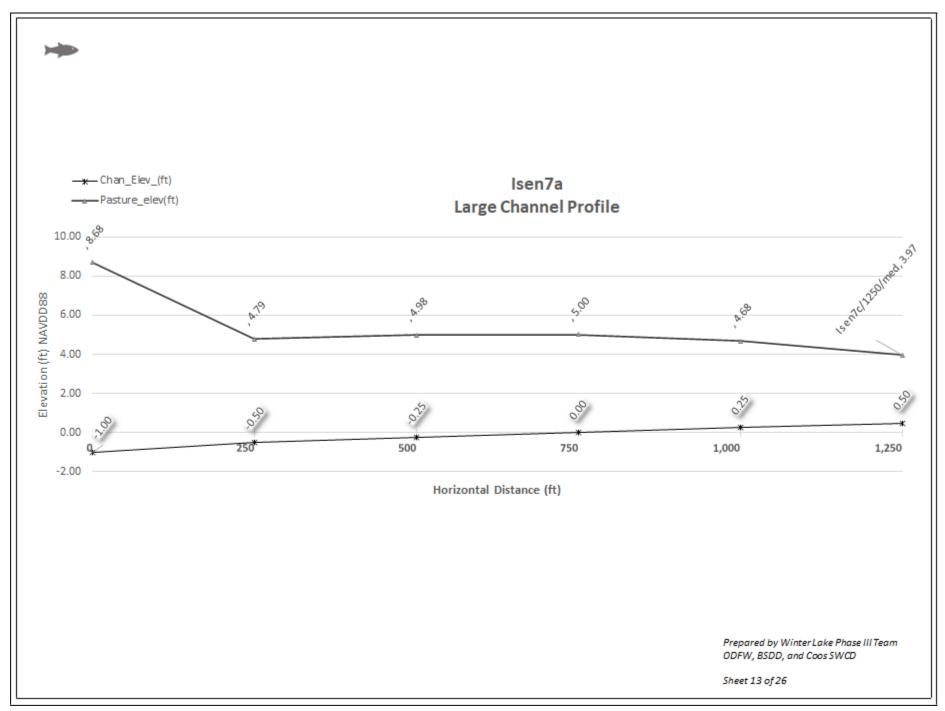


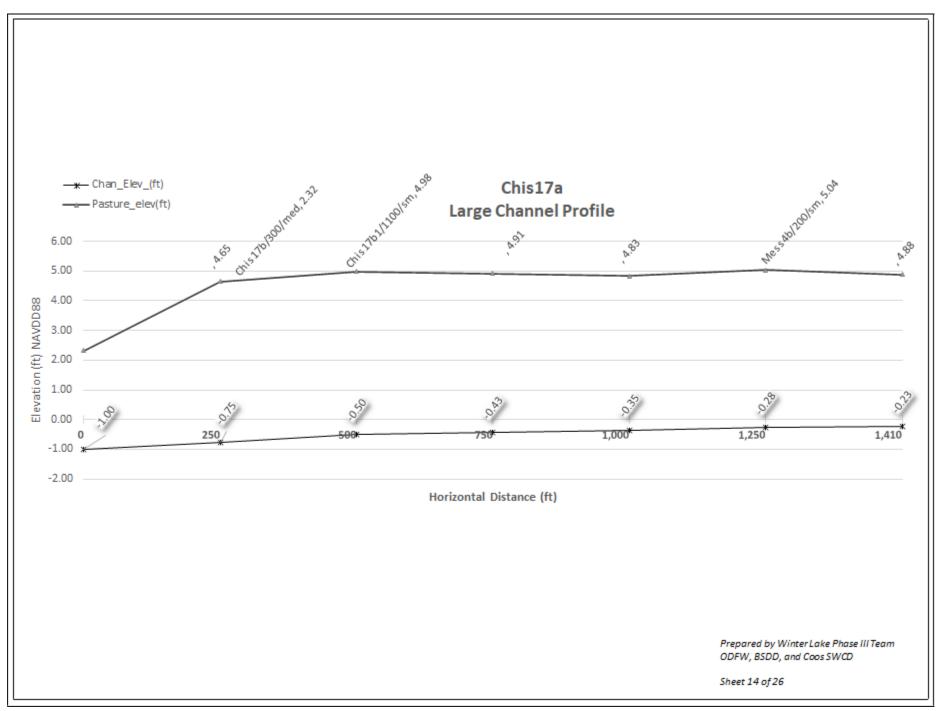


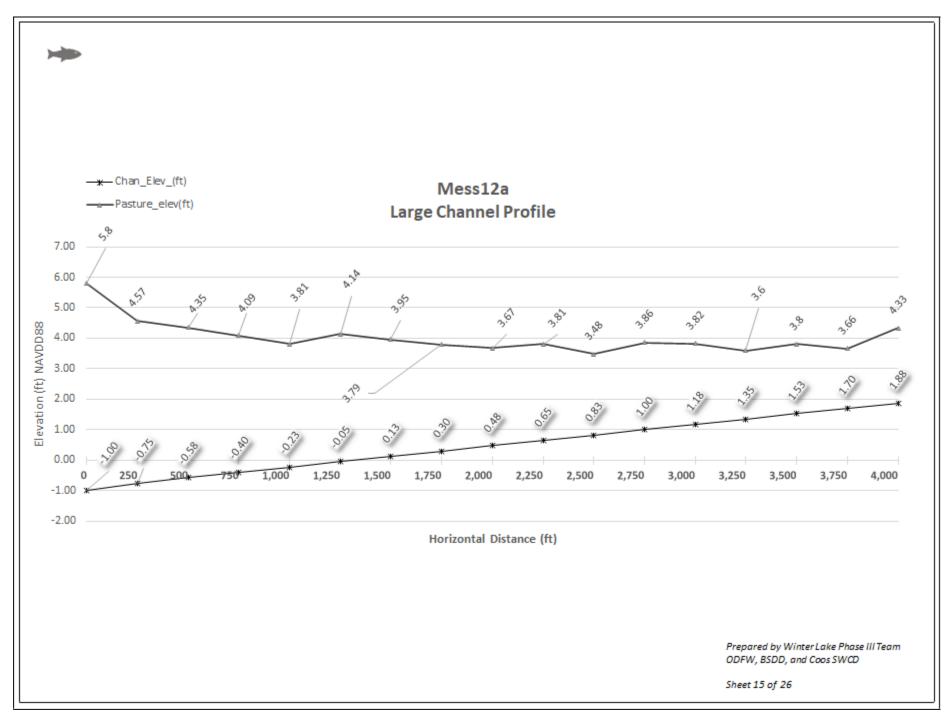


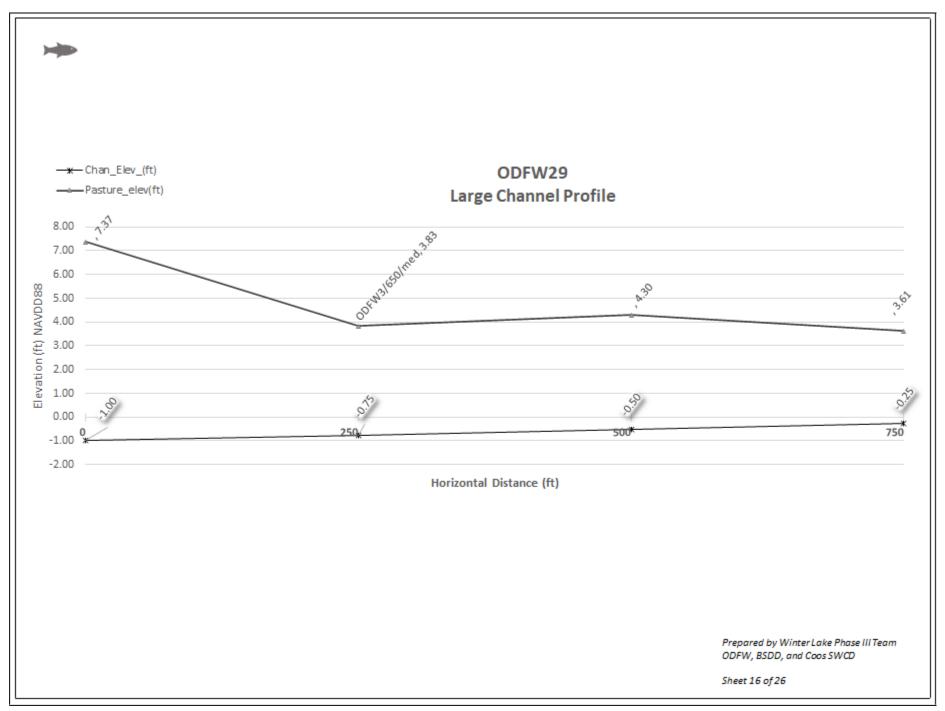


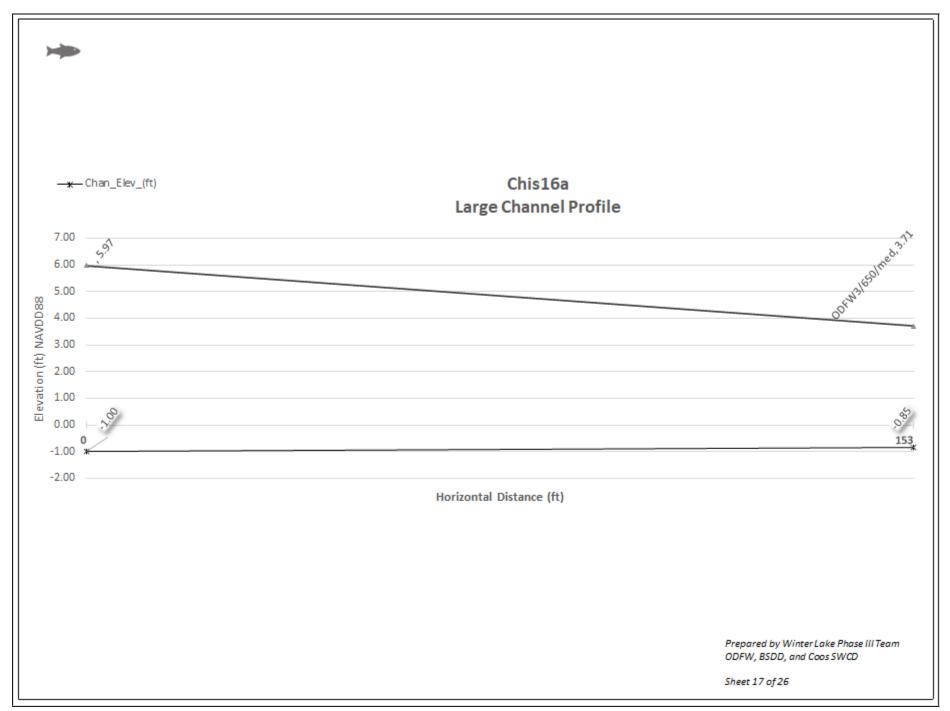


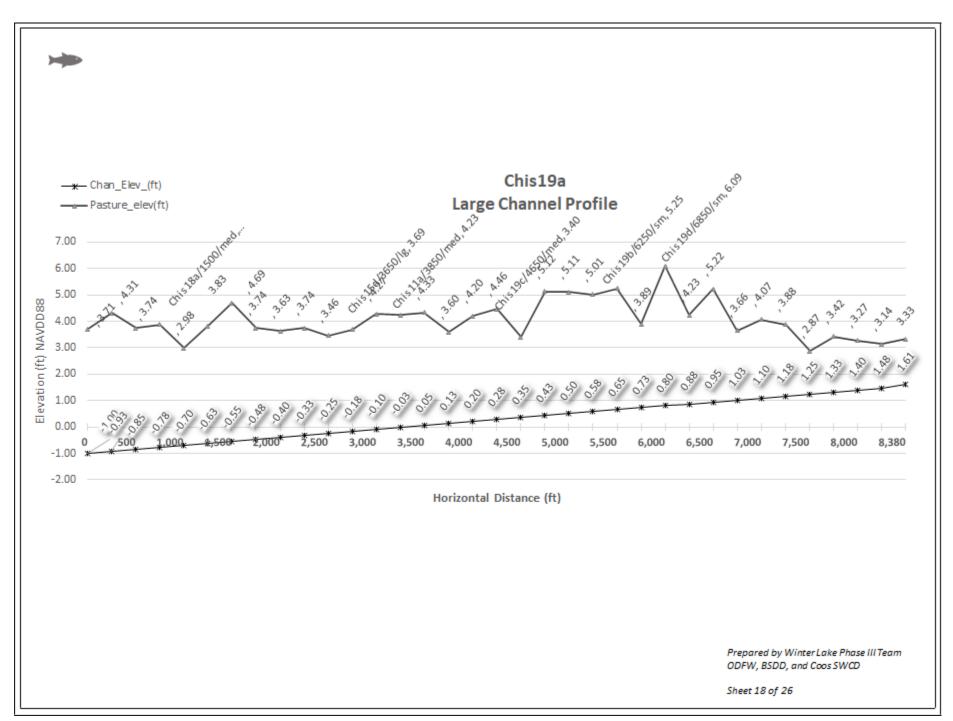


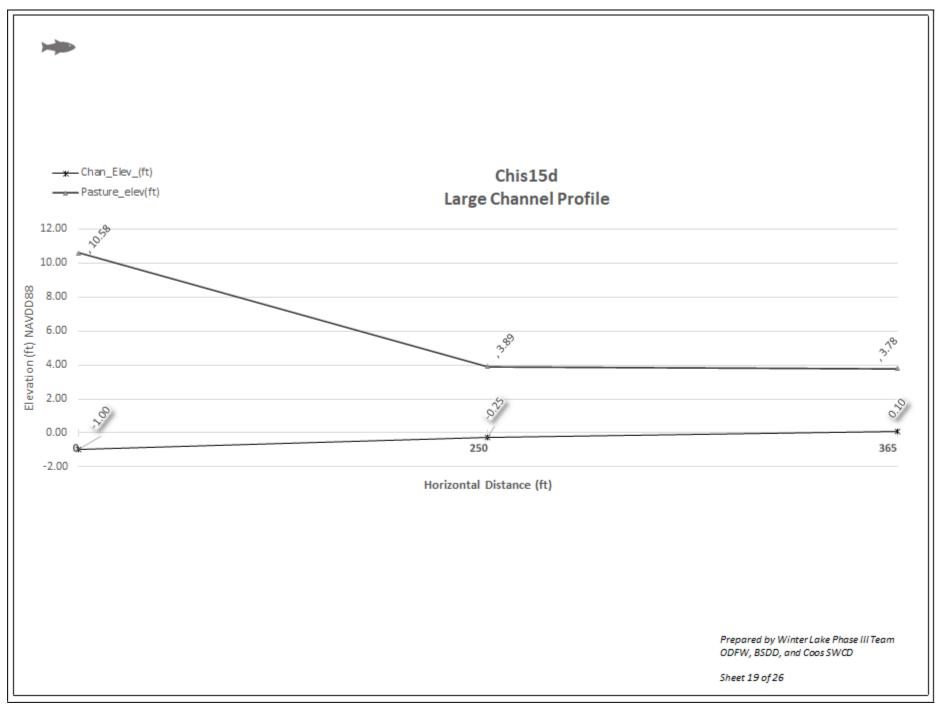


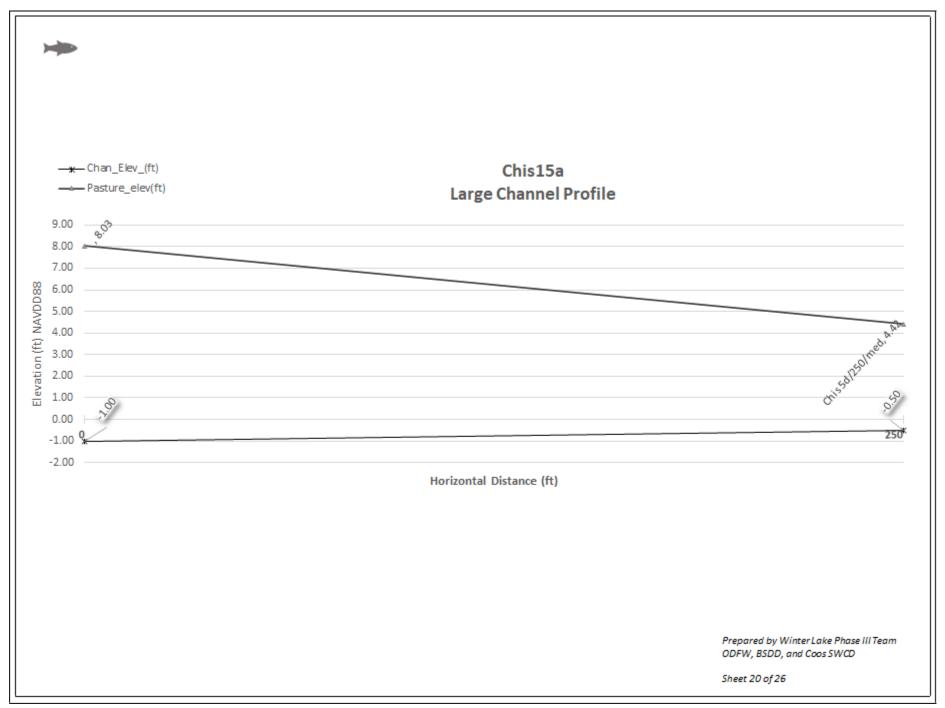


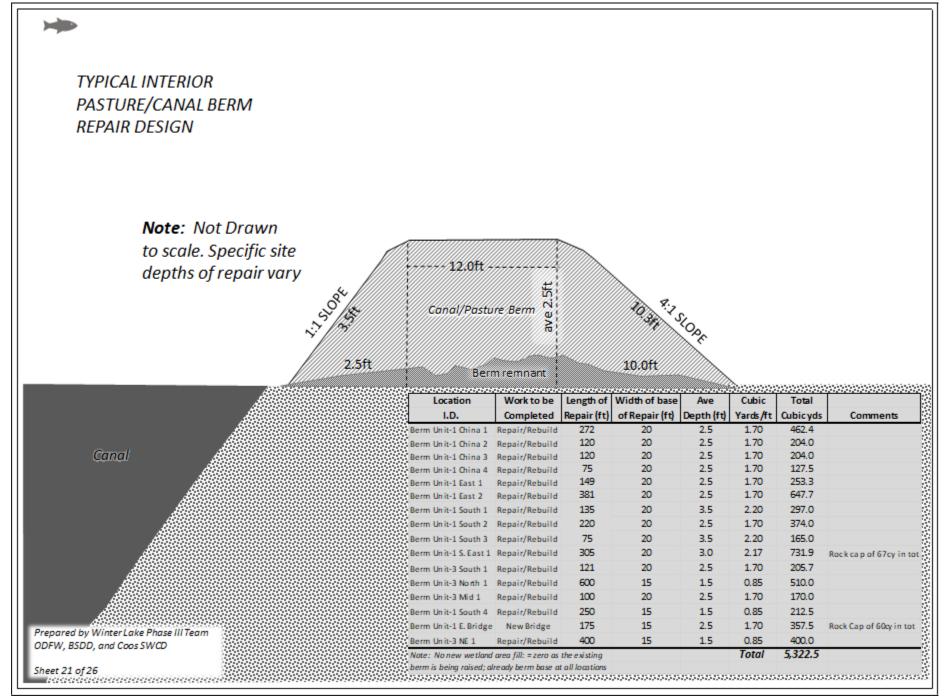


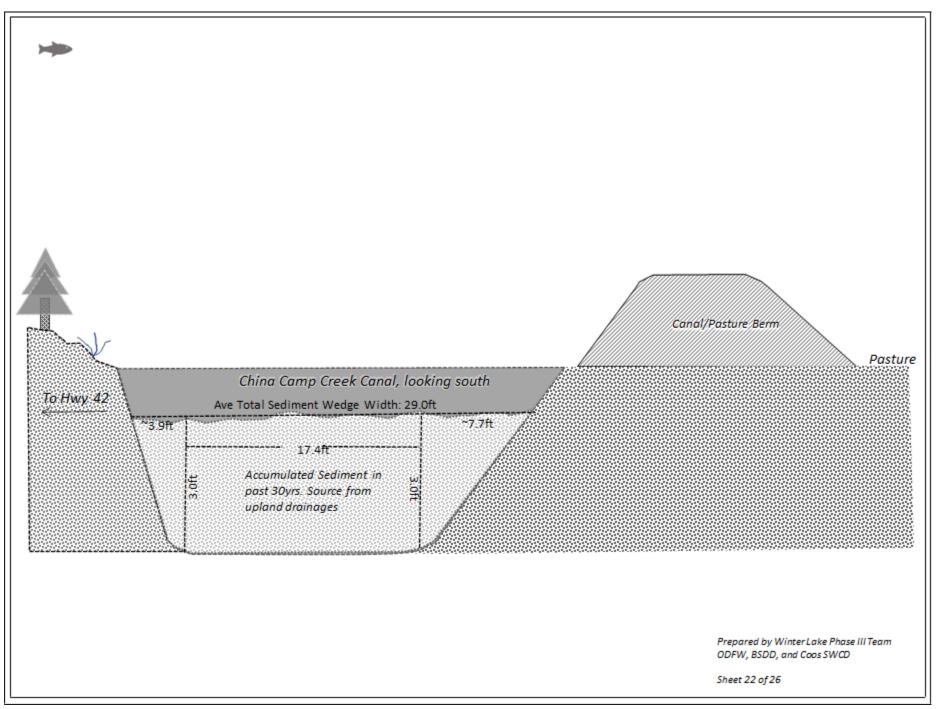


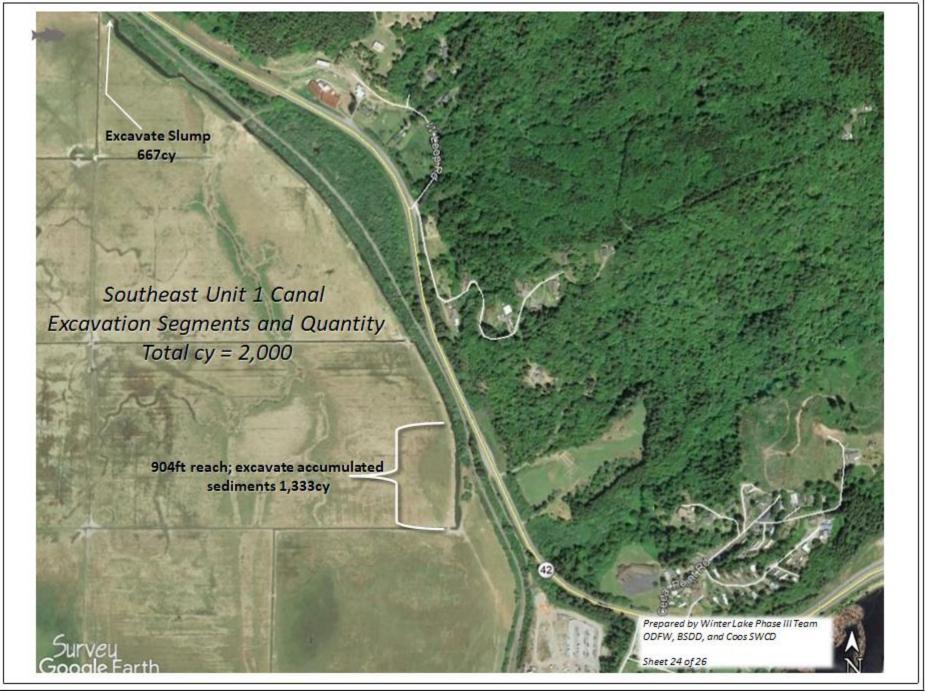


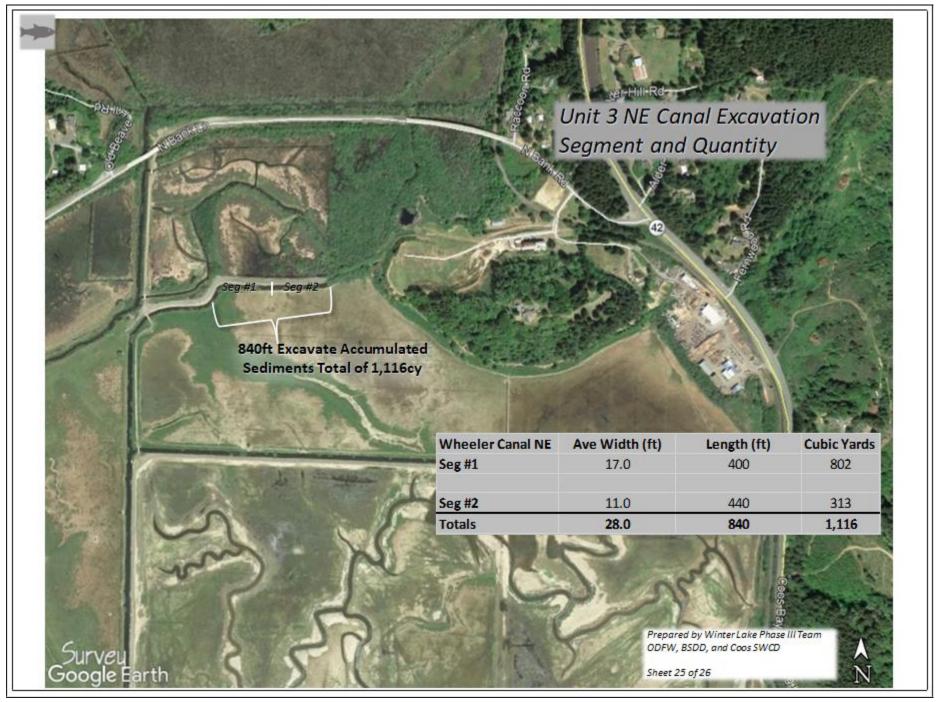












of Sediment Wedge (ft) 9.9 14.6 12.3 29.0 7	Wedge; Ave (ft) 3.0 3.0 3.0 4.0 Total all Segments	3,253.0
14.6 12.3 29.0	3.0 3.0 SubTotal 4.0	178.8 183.1 422.1 3,253.0
12.3 29.0	3.0 SubTotal 4.0	183.1 422.1 3,253.0
29.0	SubTotal 4.0	422.1 3,253.0
	4.0	3,253.0
	Total all Segments	3675.1
ent at		
eennemteh method		
		Ninter Lake Phase III Team
and and		Prepared by V

		-	-	-	-				
	Hydro Bulb	Channel	Distance frm	NAVDD88	Field	Excavate			Excavate
	I.D.		Connect Chan (ft)					Sq ft	Volume CY
Hydrologic Bulb	Isen8a2 Mess1a2	Small Medium-S	3,995 1,571	2.5 1.8			0.73 0.7	31,799 30,492	1,827 3,112
	Mess11d	Large	1,250	2.5	4.67	2.17	0.74	32,234	2,841
Layout Cross-Section	Mess1c2	Large	1,075	2.5	3.84	1.34	1.19	51,836	2,883
	Isen7a3	Small	2,137	2.0	4.27	2.27	0.61	26,572	2,511
	Mess2a	Large	1,215	1.8	2.99	1.19	0.46	20,038	1,081
	Chis5b	Medium	837	2.1	3.74	1.64	0.43	18,731	1,331
	Chis19c3	Small	688	1.8	2.88	1.12	0.8	34,848	1,686
	Chis20c	Small	1,130	1.8	2.91	1.11	0.76	33,106	1,604
	Chis5d	Medium	895	2.0	5.39	3.39	0.39	16,988	2,311
	Chis19c	Small	1,500	2.3	4.33	2.03	0.28	12,197	1,071
	Chis7c	Medium	902	3.5	4.79	1.28	0.47	20,473	1,172
	Chis12b	Small	550	1.8	3.14	1.34	1.12	48,787	2,675
	Mess1e	Small	880	2.5	3.96	1.46	1.14	49,658	2,990
	Isen4a2	Small	1,333	2.0	4.62	2.62	1.05	45,738	4,631
	Isen8d	Small	732	2.5	3.65	1.15	0.92	40,075	1,972
	ODFW12a	Medium	655	1.0	2.71	1.71	1.2	52,272	3,627
	ODFW3a	Small	422	1.0	2.89	1.89	0.94	40,946	2,866
	ODFW27a	Small	230	1.0	3.23	2.23	0.941	40,990	3,666
	Chis1b	Small	377	1.5	3.82	2.32	0.94	40,946	3,790
	Chis4b	Small	338	1.5	4.18	2.68	0.85	37,026	3,939
	Chis3c	Small	516	1.5	4.94	3.44	1.9	82,764	10,921
					Totals		18.56	808,517	64,505
				į	4 GH				
		Hydrologi	Bulb		4 9	0.8ft		Pa	asture
		Invert Elev			8	5:1 slo	ning		
5:1 sloping	Range = 1	1.8-2.5ft belo	ow field elevation	on g	00	5:1 510	۴.		
					G				
					•				
	<u></u>	<u>······</u>		<u> </u>	<u></u>			r Lake Phase Coos SWCD	lli Team
						Sheet 26	of 26		

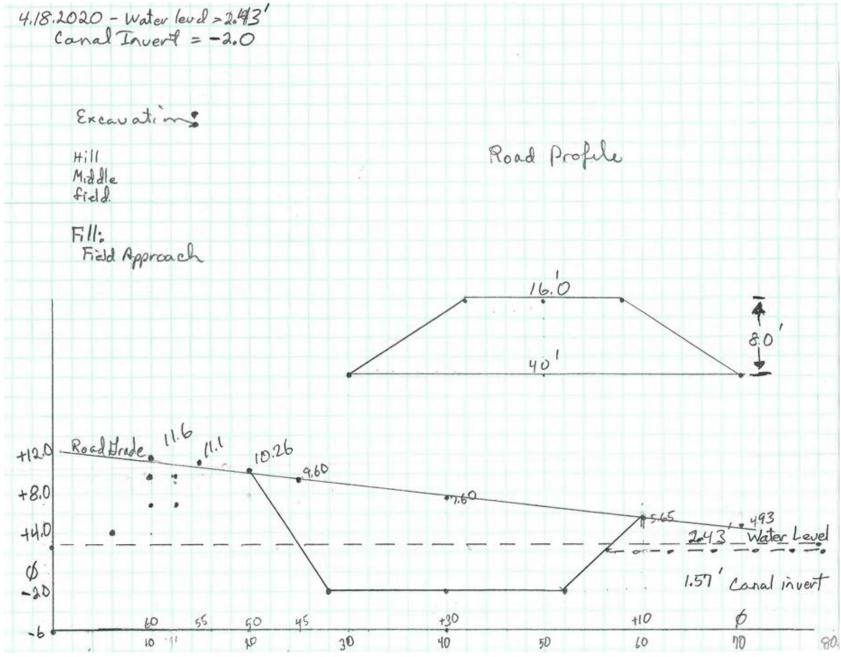


Figure 9. Unit 1 S. Canal S.E. pasture access bridge cross-section drawing profile of canal excavation and road profile.

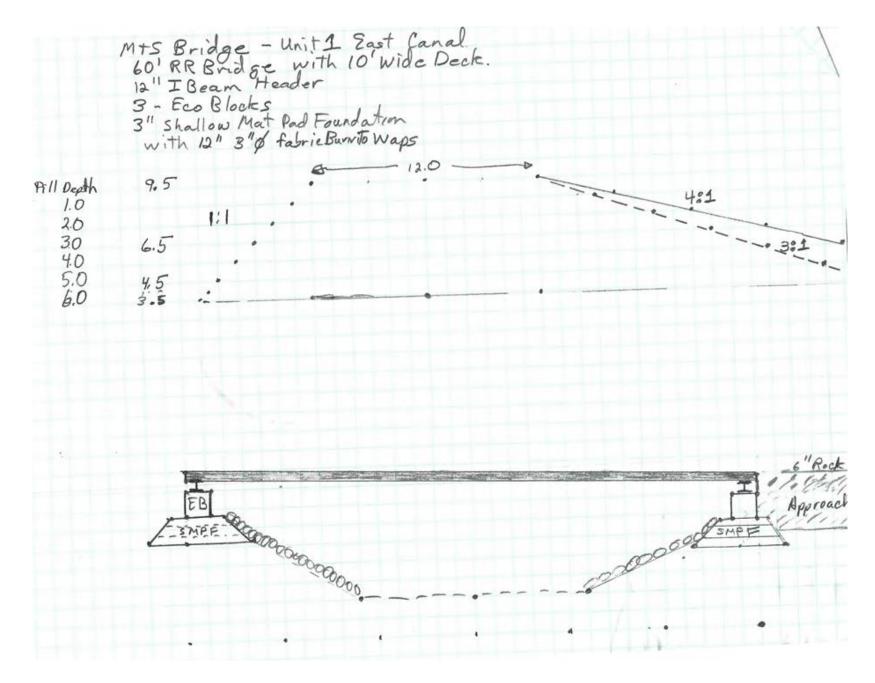


Figure 10. Unit 1 S. Canal S.E. pasture access bridge cross-section drawing.

Page 47 of 81

Table 3. Phase III Fill and Removal volumes and dispositions

	Channel Construe	cion/R		-		_		
			Length	Excavate	Fill	Excavate	Thinspread	Fill
Landowner	Wetland/Waterbody	Size	(ft)	Cubic Yards	Cubic Yards	Acres	Area Acres	Comments
Bridges Foundation	Interior Pasture Channel	Small	15,006	10,473	10,473	3.8	8.7	3.0" ave thinspread pasture
	Interior Pasture Channel	Medium	14,851	14,876	14,876	3.9	12.3	3.0" ave thinspread pasture
	Interior Pasture Channel	Large	18,690	31,121	29,292	6.0	24.2	3.0" ave thinspread pasture
Isenhart/Smith	Interior Pasture Channel	Small	8,633	5,974	5,317	2.2	4.4	3.0" ave thinspread pasture
	Interior Pasture Channel	Medium	3,651	3,666	3,666	1.0	3.0	3.0" ave thinspread pasture
	Interior Pasture Channel	Large	4,335	6,983	6,750	1.4	5.6	3.0" ave thinspread pasture
Maccarla	Interior Pasture Channel	Small	12,582	8,795	7,556	3.2	6.2	3.0" ave thinspread pasture
IVIE33ETTE	Interior Pasture Channel	Medium	2,119	2,078	2,078	0.6	1.7	3.0" ave thinspread pasture
	Interior Pasture Channel			4,038	4,038	0.8	3.3	3.0" ave thinspread pasture
	Interior Pasture Channel	Large	9,052	14,780	13,734	2.9	11.4	3.0" ave thinspread pasture
		Large	5,052	1,,,00	10,701	215		
ODFW	Interior Pasture Channel	Small	2,495	2,037	2,037	0.6	1.7	3.0" ave thinspread pasture
	Interior Pasture Channel	Medium	4,562	4,675	5,175	1.2	4.3	3.0" ave thinspread pasture
	Interior Pasture Channel	Large	775	1,319	500	0.2	0.4	3.0" ave thinspread pasture
	S	ubtotals	99,781	110,815	105,492	27.8	87.2	
	* 5,323 cy of cubic yards	excavated	used for be	erm repair				
Ca	anal Excacavation							
			Length	Excavate	Fill	Excavate	Thinspread	Fill
Landowner	Wetland/Waterbody	Size	(ft)		Cubic Yards	Acres	Area Acres	Comments
Bridges Foundation	ciiina/camp canai E.	Canal	1,262	3,675	3,675	0.87	3.0	3.0" ave thinspread pasture
Messerle	Unit 1 Canal S.E. (2 locs)	Canal	~200	2,000	2,000	0.06	1.7	3.0" ave thinspread pasture
				,	,			
ODFW	Unit 3 Canal N.E.	Canal	840	1,116	1,116	0.12	0.9	3.0" ave thinspread pasture
	S	ubtotals	2,302	6,791	6,791	1.0	5.6	
	Berm Reconstruc	tion						
			Length	Excavate	Fill	Excavate	Fill	Fill
Landowner	Wetland/Waterbody	Size	(ft)	Cubic Yards	Cubic Yards	Acres	Area Acres	Comments
Bridges Foundation	China/Camp Canal Berm	20ft base	587	0	997	N/A	0.27	Fill from chan construction
-	Unit 1 Canal Berm misc	20ft base	221	0	376	N/A	0.10	Fill from chan construction
bridges roundation	onit i canal benn hise	2010 0030			570	14/7	0.10	Fill from chan construction
Messerle	Unit 1 E.; #1 and 2 sites	20ft base	530	0	901	N/A	0.24	Fill from chan construction
Messerle	Unit 1 S. #2	20ft base	220	0	374	N/A	0.10	Fill from chan construction
Messerle	Bridge approach	20ft base	80	0	358	N/A	0.04	Fill from chan construction
				-		,		Fill from chan construction
Isenhart/Smith	Unit 1 S. #1, 3, & 4	20ft base	460	0	675	N/A	0.21	Fill from chan construction
Isenhart/Smith	Unit 1 E	20ft base	149	0	732	N/A	0.07	Fill from chan construction
								Fill from chan construction
ODFW	Unit 3 North	20ft base	600	0	510	N/A	0.28	Fill from chan construction
ODFW	Unit 3 N.E.	20ft base	400	0	400	N/A	0.18	Fill from chan construction
	9	Suttotals	3,247	0	5,323		1.49	
	Culvert Installati	on Ripr	ap (and)	one bridge	site)*			
		Area	Number	Excavate	Tot Fill	Excavate	Fill	Fill
Landowner	Wetland/Waterbody	Sq Ft			Cubic Yards	Acres	Area Acres	Comments
		100	16		320		0.002	comments
Bridges Foundation			9	N/A		N/A		
Messerle	Pasture chan culverts	100		N/A	180	N/A	0.002	2.014 himmer 1/40
Messerle	Unit 1 S.E. Bridge	480	1	456	496	0.01	1.130	3.0" thinspread/40cy riprap instal
Isenhart/Smith		100	5	N/A	100	N/A	0.002	
ODFW	Pasture chan culverts	100	7 Totala	N/A	140	N/A	0.002	
			Totals	456	1,236	0.11	1.139	
	Hydrologic Bulb	Constru	ction*	l	l			
	Tryurologic buib (-	1	-		
		Area	Number	Excavate	Fill	Excavate	Thinspread	Fill
Landowner	Wetland/Waterbody	Sq Ft	Locations	Cubic Yards	Cubic Yards	Acres	Area Acres	Comments
Bridges Foundation	Interior Pastures	345,866	10	30,499	30,499	7.94	25.2	3.0" ave thinspread pasture
Messerle	Interior Pastures	184,259	5	12,907	12,907	4.23	10.7	3.0" ave thinspread pasture
Isenhart/Smith	Interior Pastures	134,208	4	10,159	10,159	3.081	8.4	3.0" ave thinspread pasture
ODFW	Interior Pastures	144,184	3	10,940	10,940	3.31	9.0	3.0" ave thinspread pasture
0011	interior rustures	1.1,104	Totals	64,505	64,505	18.6	53.3	and are annopredu publicite
Pridaos Four dati	Wotland Dimension and	Email						wof 64 EOE gutated
bridges Foundation	Wetland Diversity Mounds	5 mounds	∠untin dia	meter ~3ft i	n depth, mai	ntain wetla	ing tactors 80c	y 01 04,505 cy total.
	Heavy Use Water	<u>ing T</u> ro	<u>ugh Sit</u>	es				
		Area	Number	Excavate	Fill	Excavate	Thinspread	Fill
Landowner	Wetland/Waterbody	Sq Ft			Cubic Yards	Acres	& Rock Acres	Comments
		1600	4	47.4	47.4	0.04	0.08	3.0" ave thinspread pasture/4" ro
Mossorlo		1000	4	4/.4	47.4	0.04	0.08	5.0 ave unispread pasture/4" ro
	Interior Pastures		n	77 7	77 7	0.02	0.01	2.0" and this could be a firm
Isenhart/Smith	Interior Pastures	800	2	23.7	23.7	0.02	0.04	
Messerle Isenhart/Smith Bridges Foundation			2 3 Totals	23.7 35.6 106.7	23.7 35.6 106.7	0.02 0.03 0.08	0.04 0.06 0.17	3.0" ave thinspread pasture/4" roo 3.0" ave thinspread pasture/4" roo

APPENDIX A

Winter Lake Phase III Channel Gradients

Lar	ge Chan	nels	Chan Elev			
Channel	Channel	Distance frm	NAVDD88	Lidar	Chan	Connect Chan
I.D.	Size	Cnct Chan (ft)	Invert (ft)	(ft) ¹	Slope % ²	I.D./loc_dist/sze
lsen8a	Large	0	-1.00	7.85	0.09%	Canal
lsen8a	Large	250	-0.78	5.23	0.09%	
lsen8a	Large	500	-0.55	4.71	0.09%	
lsen8a	Large	750	-0.38	5.52	0.07%	
lsen8a	Large	1000	-0.20	4.91	0.07%	lsen8b/1010/sm
lsen8a	Large	1250	-0.03	4.40	0.07%	lsen8c/1270/sm
lsen8a	Large	1500	0.15	3.54	0.07%	
lsen8a	Large	1750	0.33	4.62	0.07%	
lsen8a	Large	2000	0.50	4.89	0.07%	
lsen8a	Large	2250	0.68	4.77	0.07%	
lsen8a	Large	2500	0.85	4.20	0.07%	lsen8e/2500/sm
lsen8a	Large	2750	1.03	4.09	0.07%	lsen8f/2600/sm
lsen8a	Large	3000	1.20	3.93	0.07%	lsen8a2/3000/sm
lsen8a	Large	3095	1.27	3.70	0.07%	
Isen8a2	Small	3995	1.90	3.85	0.07%	lsen8a2/3995/term
Mess13a	Large	0	-1.00	3.92	0.10%	
Mess13a	Large	250	-0.75	3.36	0.10%	
Mess13a	Large	500	-0.55	2.96	0.08%	Mess13b/525/sm
Mess13a	Large	750	-0.35	2.04	0.080%	
Mess13a	Large	1000	-0.15	2.10	0.080%	
Mess13a	Large	1250	0.05	4.13	0.080%	Mess13d/1251/sm
Mess13a	Large	1500	0.25	4.44	0.080%	
Mess13a	Large	1750	0.45	3.43	0.080%	
Mess13a	Large	2000	0.65	4.29	0.080%	
Mess13a	Large	2250	0.85	4.44	0.080%	
Mess13a	Large	2500	1.05	3.19	0.080%	
Mess13a	Large	2585	1.12	2.73	0.080%	Mess1c2/hydrobulb
Mess12a	Large	0	-1.00	5.80	0.100%	
Mess12a	Large	250	-0.75	4.57	0.100%	ļ
Mess12a	Large	500	-0.58	4.35	0.070%	
Mess12a	Large	750	-0.40	4.09	0.070%	ļ
Mess12a	Large	1000	-0.23	3.81	0.070%	
Mess12a	Large	1250	-0.05	4.14	0.070%	
Mess12a	Large	1500	0.13	3.95	0.070%	
1). Elevation of g	eneral pasture la	nds adjacent to chanr	iel point			
	0 is 0.50% and the	e the grade forward of en 0.20%at 500ft then				

Appendix A. Table 1. Winter Lake Phase III interior pasture channel gradient. *Note:* In tables the channel grades are the grade forward of the station; i.e. if the grade at 250 is 0.50% and then 0.20% at 500ft then the grade from 250 to 500 is 0.20%

Lar	ge Chan	nels	Chan Elev			
Channel	Channel	Distance frm	NAVDD88	Lidar	Chan	Connect Chan
I.D.	Size	Cnct Chan (ft)	Invert (ft)	(ft) ¹	Slope % ²	I.D./loc_dist/sze
Mess12a	Large	1750	0.30	3.79	0.070%	
Mess12a	Large	2000.00	0.48	3.67	0.07%	
Mess12a	Large	2250	0.65	3.81	0.07%	
Mess12a	Large	2500	0.83	3.48	0.07%	
Mess12a	Large	2750	1.00	3.86	0.07%	
Mess12a	Large	3000	1.18	3.82	0.07%	
Mess12a	Large	3250	1.35	3.60	0.07%	
Mess12a	Large	3500	1.53	3.80	0.07%	
Mess12a	Large	3750	1.70	3.66	0.07%	
Mess12a	Large	4000	1.88	4.33	0.07%	Mess11d/hydrobulb
Mess3a	Large	0	-1.00	6.35	0.30%	
Mess3a	Large	250	-0.25	2.41	0.30%	
Mess3a	Large	500	0.38	3.37	0.25%	
Mess3a	Large	750	1.00	3.15	0.25%	
Mess3a	Large	1000	1.63	2.86	0.25%	
Mess3a	Large	1075	1.81	2.84	0.25%	Mess11d/hydrobulb
Mess11a	Large	0	-1.00	3.86	0.30%	
Mess11a	Large	250	-0.25	3.76	0.30%	
Mess11a	Large	500	0.00	4.11	0.10%	Mess11d/580
Mess11a	Large	750	0.25	3.43	0.10%	
Mess11a	Large	1000	0.50	3.60	0.10%	
Mess11a	Large	1250	0.75	2.18	0.10%	Mess11c/1250
Mess11a	Large	1500	1.00	3.25	0.10%	
Mess11a	Large	1750	1.25	2.72	0.10%	
Mess11a	Large	2000	1.50	3.51	0.10%	
Mess11a	Large	2250	1.75	4.19	0.10%	
Mess11a	Large	2407	1.91	4.00	0.10%	
Mess11c	Large	0	1.00	3.54	0.20%	
Mess11c	Large	250	1.50	3.92	0.20%	
Mess11c	Large	500	2.00	3.90	0.20%	
Mess11c	Large	750	2.50	4.66	0.20%	
Mess11c	Large	1000	3.00	4.91	0.20%	
Mess11c	Large	1250	3.50	4.98	0.20%	
Mess11c	Large	1301	3.60	5.18	0.20%	
1). Elevation of g	eneral pasture la	nds adjacent to chann	el point			

Appendix A. Table 1. Continued

Lar	ge Chan	nels	Chan Elev			
Channel	Channel	Distance frm	NAVDD88	Lidar	Chan	Connect Chan
I.D.	Size	Cnct Chan (ft)	Invert (ft)	(ft) ¹	Slope % ²	I.D./loc_dist/sze
Chis9a	Large	0	-1.00	3.98	0.10%	
Chis9a	Large	250	-0.75	2.93	0.10%	
Chis9a	Large	500	-0.50	2.90	0.10%	
Chis9a	Large	750	-0.25	4.16	0.10%	
Chis9a	Large	1000	0.00	3.90	0.10%	Chis9b/580/med
Chis9a	Large	1250	0.25	2.77	0.10%	
Chis9a	Large	1500	0.50	2.79	0.10%	
Chis9a	Large	1750	0.75	3.20	0.10%	
Chis9a	Large	2000	1.00	2.89	0.10%	
Chis2a	Large	0	-1.00	2.64	0.10%	
Chis2a	Large	250	-0.75	4.37	0.10%	
Chis2a	Large	500	-0.50	4.59	0.10%	
Chis2a	Large	750	-0.25	5.91	0.10%	Chis2g/250/med
Chis2a	Large	1000	0.00	6.44	0.10%	
Chis2a	Large	1250	0.25	4.98	0.10%	
Chis2a	Large	1500	0.50	4.79	0.10%	Chis2e/1100/sm
Chis2a	Large	1750	0.50	4.96	0.00%	Chis2d/1500/sm
Chis2a	Large	2000	0.50	4.89	0.00%	Chis2c/1500/sm
Chis2a	Large	2250	0.50	5.74	0.00%	
Chis2a	Large	2500	0.50	6.81	0.00%	
Chis2a	Large	2750	0.50	10.92	0.00%	
Chis2a	Large	2825	0.50	11.16	0.00%	
Chis7b	Large	0	-1.00	2.64	0.10%	
Chis7b	Large	250	-0.75	3.54	0.10%	
Chis7b	Large	500	-0.50	4.15	0.10%	
Chis7b	Large	750	-0.25	4.13	0.10%	Chis5b/250/med
Chis7b	Large	1000	0.00	4.52	0.10%	Chis5d/250/med
Chis7b	Large	1250	0.25	3.51	0.10%	
Chis7a	Large	0	-1.00	8.12	0.15%	Chis7c/1000/med
Chis7a	Large	250	-0.63	4.54	0.15%	
Chis7a	Large	500	-0.25	4.75	0.15%	
Chis7a	Large	750	0.13	4.94	0.15%	
Chis7a	Large	1000	0.50	3.81	0.15%	
Chis7a	Large	1250	1.00	5.45	0.20%	
.). Elevation of g	general pasture la	nds adjacent to chann	el point			

Appendix A. Table 1. Continued

Appendix A.	Table 1.	Continued
-------------	----------	-----------

Lar	ge Chanr	nels	Chan Elev			
Channel	Channel	Distance frm	NAVDD88	Lidar	Chan	Connect Chan
I.D.	Size	Cnct Chan (ft)	Invert (ft)	(ft) ¹	Slope % ²	I.D./loc_dist/sze
Chis7a	Large	1500	1.50	5.28	0.20%	
Chis7a	Large	1590	2.76	5.50	1.40%	Chis 7a 2/1250/med
Chis7a2	Medium	1980	8.22	9.14	1.40%	
Chis6a	Large	0	-1.00	7.56	0.20%	
Chis6a	Large	250	-0.50	3.75	0.20%	
Chis6a	Large	500	0.00	3.19	0.20%	
Chis6a	Large	600	0.20	2.99	0.20%	
lsen7a	Large	0	-1.00	8.68	0.20%	
lsen7a	Large	250	-0.50	4.79	0.20%	
lsen7a	Large	500	-0.25	4.98	0.10%	[
lsen7a	Large	750	0.00	5.00	0.10%	
lsen7a	Large	1000	0.25	4.68	0.10%	
lsen7a	Large	1250	0.50	3.97	0.10%	
lsen7a3	Small	2137	1.39	4.27	0.10%	
Chis17a	Large	0	-1.00	2.32	0.10%	lsen7c/1250/med
Chis17a	Large	250	-0.75	4.65	0.10%	lsen7a3/hydrobulb
Chis17a	Large	500	-0.50	4.98	0.10%	
Chis17a	Large	750	-0.43	4.91	0.03%	Chis17b/300/med
Chis17a	Large	1000	-0.35	4.83	0.03%	
Chis17a	Large	1250	-0.28	5.04	0.03%	Chis17b1/1100/sm
Chis17a	Large	1410	-0.23	4.88	0.03%	
ODFW29	Large	0	-1.00	7.37	0.10%	
ODFW29	Large	250	-0.75	3.83	0.10%	Mess4b/200/sm
ODFW29	Large	500	-0.50	4.30	0.10%	
ODFW29	Large	750	-0.25	3.61	0.10%	ODFW3/650/med
Chis16a	Large	0	-1.00	5.97	0.10%	
Chis16a	Large	153	-0.85	3.71	0.10%	
Chis19a	Large	0	-1.00	3.71	0.03%	Chis19b/275/med
Chis19a	Large	250	-0.93	4.31	0.03%	
Chis19a	Large	500	-0.85	3.74	0.03%	
Chis19a	Large	750	-0.78	3.88	0.03%	
Chis19a	Large	1000	-0.70	2.98	0.03%	
Chis19a	Large	1250	-0.63	3.83	0.03%	Chis 18a / 1500 / med
Chis19a	Large	1500	-0.55	4.69	0.03%	
1). Elevation of g	eneral pasture lan	ds adjacent to chann	el point			
	0 is 0.50% and the	the grade forward of n 0.20%at 500ft then				

Lar	ge Chan	nels	Chan Elev			
Channel	Channel	Distance frm	NAVDD88	Lidar	Chan	Connect Chan
I.D.	Size	Cnct Chan (ft)	Invert (ft)	(ft) ¹	Slope % ²	I.D./loc_dist/sze
Chis19a	Large	1750	-0.48	3.74	0.03%	
Chis19a	Large	2000	-0.40	3.63	0.03%	
Chis19a	Large	2250	-0.33	3.74	0.03%	
Chis19a	Large	2500	-0.25	3.46	0.03%	
Chis19a	Large	2750	-0.18	3.69	0.03%	
Chis19a	Large	3000	-0.10	4.27	0.03%	
Chis19a	Large	3250	-0.03	4.23	0.03%	Chis15d/3650/lg
Chis19a	Large	3500	0.05	4.33	0.03%	
Chis19a	Large	3750	0.13	3.60	0.03%	Chis11a/3850/med
Chis19a	Large	4000	0.20	4.20	0.03%	
Chis19a	Large	4250	0.28	4.46	0.03%	
Chis19c	Large	4500	0.35	3.40	0.03%	
Chis19a	Large	4750	0.43	5.12	0.03%	
Chis19a	Large	5000	0.50	5.11	0.03%	Chis19c/4650/med
Chis19a	Large	5250	0.58	5.01	0.03%	
Chis19a	Large	5500	0.65	5.25	0.03%	
Chis19a	Large	5750	0.73	3.89	0.03%	
Chis19a	Large	6000	0.80	6.09	0.03%	Chis19b/6250/sm
Chis19a	Large	6250	0.88	4.23	0.03%	
Chis19a	Large	6500	0.95	5.22	0.03%	Chis19d/6850/sm
Chis19a	Large	6750	1.03	3.66	0.03%	
Chis19a	Large	7000	1.10	4.07	0.03%	
Chis19a	Large	7250	1.18	3.88	0.03%	
Chis19a	Large	7500	1.25	2.87	0.03%	
Chis19a	Large	7750	1.33	3.42	0.03%	
Chis19a	Large	8000	1.40	3.27	0.03%	
Chis19a	Large	8250	1.48	3.14	0.03%	
Chis19a	Large	8380	1.61	3.33	0.10%	
Chis15d	Large	0	-1.00	10.58	0.30%	
Chis15d	Large	250	-0.25	3.89	0.30%	
Chis15d	Large	365	0.10	3.78	0.30%	
Chis5a	Large	0	-1.00	8.03	0.20%	
Chis5a	Large	250	-0.50	4.42	0.20%	
1) Elevation of a	eneral pasture la	nds adjacent to chann	el point			

Appendix A. Table 1. Continued

Continued				[1
Mediun	n Channe	ls	Chan Elev			
Channel	Channel	Distance frm	NAVDD88	Lidar	Chan	Hydro Bulb
I.D.	Size	Cnct Chan (ft)	Invert (ft)	(ft) ¹	Slope % ²	Elev Invert (ft)
Mess1a	Lg to Med-S	0	-1.00	7.47	0.80%	
Mess1a	Medium_S	71	-0.43	4.07	0.80%	
Mess1a	Medium_S	321	1.57	4.09	0.80%	mess1b/321
Mess1a	Medium_S	571	1.74	3.63	0.07%	
Mess1a	Medium_S	821	1.92	4.02	0.07%	
Mess1a	Medium_S	1071	2.09	3.90	0.07%	
Mess1a	Medium_S	1321	2.27	4.01	0.07%	
Mess1a	Medium_S	1571	2.44	3.31	0.07%	
Mess1a	Medium_S	1636	2.4885	3.50	0.070%	hydrobulb/1.8ft
Mess2a	Lg to Med-S	0	-1.00	7.85	0.900%	
Mess2a	Medium_S	150	0.20	3.08	0.800%	Mess2b/220
Mess2a	Medium_S	400	1.95	3.11	0.700%	
Mess2a	Medium_S	650	2.08	3.20	0.050%	
Mess2a	Medium_S	900	2.20	2.78	0.050%	
Mess2a	Medium_S	1150	2.33	2.69	0.050%	
Mess2a	Medium_S	1215	2.36	2.79	0.050%	
Mess12b	Medium_S	0	0.30	3.51	0.600%	Mess12a/1750
Mess12b	Medium_S	250	1.80	3.90	0.600%	
Mess12b	Medium_S	500	1.98	4.16	0.070%	Mess12b2/526
Mess12b	Medium_S	750	2.15	4.17	0.07%	
Mess12b	Medium_S	1000	2.33	4.08	0.07%	
Mess12b	Medium_S	1050	2.36	4.11	0.07%	
Mess4a	Lg to Med-S	0	-1.00	7.11	0.90%	
Mess4a	Lg to Med-S	250	1.25	3.32	0.90%	
Mess4a2	Medium_S	405	1.72	3.58	0.30%	Mess4c
Mess4a2	Medium_S	655	1.84	3.28	0.05%	Mess4d/710
Mess4a2	Medium_S	905	1.97	3.76	0.05%	
Mess4a2	Medium_S	1155	2.09	3.87	0.05%	
Mess4a2	Medium_S	1405	2.22	4.27	0.05%	Mess4e/1300
Mess4a2	Medium_S	1655	2.34	5.02	0.05%	
Mess4a2	Medium_S	1905	2.47	4.65	0.05%	
Mess4a2	Medium_S	2155	2.59	3.58	0.05%	
Mess4a2	Medium_S	2180	2.60	4.13	0.05%	
Mess8a	Medium_S	0	-1.00	4.85	1.40%	
1). Elevation of g	eneral pasture land	is adjacent to channe	el point			
		he grade forward of .20%at 500ft then the				

Mediur	n Channe	els	Chan Elev			
Channel	Channel	Distance frm	NAVDD88	Lidar	Chan	Hydro Bulb
I.D.	Size	Cnct Chan (ft)	Invert (ft)	(ft) ¹	Slope % ²	Elev Invert (ft)
Mess8a	Medium_S	250	2.50	3.22	1.40%	Different formula
Mess8a	Medium_S	417	2.65	3.33	0.09%	Different formula
Mess13c	Medium	0	0.65	3.78	0.09%	Different formula
Mess13c	Medium	250	0.88	4.30	0.09%	Different formula
Mess13c	Medium	500	1.10	3.99	0.09%	Different formula
Mess13c	Medium	636	1.22	4.23	0.09%	Different formula
Mess9a	Medium	0	-1.00	4.89	0.20%	Zero interior loc
Mess9a	Medium	250	-0.50	3.59	0.20%	
Mess9a	Medium	500	0.00	3.49	0.20%	
Mess9a	Medium	750	0.50	3.05	0.20%	
Mess9a	Medium	925	0.85	3.01	0.20%	
lsen3a	Medium	1500	-1.00	4.13	0.20%	
lsen3a	Medium	1250	-0.50	3.85	0.20%	
lsen3a	Medium	1000	-0.30	4.20	0.08%	1.97
lsen3a	Medium	750	-0.10	4.21	0.08%	Different formula
lsen3a	Medium	500	0.10	4.64	0.08%	Different formula
lsen3a	Medium	250	0.30	4.95	0.08%	Different formula
lsen3a	Medium	0	0.50	4.76	0.08%	Different formula
Chis19c	Medium	0	0.35	4.62	0.20%	Different formula
Chis19c	Medium	250	0.85	3.29	0.20%	Different formula
Chis19c	Medium	500	1.35	2.73	0.20%	Different formula
Chis19c	Medium	750	1.58	2.94	0.09%	Different formula
Chis19c	Medium	1000	1.80	4.39	0.09%	Different formula
Chis19c	Medium	1250	2.03	3.86	0.09%	Different formula
Chis19c	Medium	1500	2.25	3.54	0.09%	
Chis19c	Medium	1558	2.30	4.33	0.09%	
lsen4a	Medium	0	-1.00	3.11	0.20%	
lsen4a	Medium	250	-0.50	3.26	0.20%	
lsen4a	Medium	500	0.08	3.73	0.23%	
lsen4a2	Small	1333	1.99	4.62	0.23%	
Chis19b	Medium	0	-0.85	4.10	0.55%	
Chis19b	Medium	250	0.53	3.26	0.55%	2.30
Chis19b	Medium	500	1.90	2.88	0.55%	
lsen7c	Medium	0	0.50	4.67	0.15%	
1). Elevation of a	general pasture land	ds adjacent to channe	el point			
	is 0.50% and then 0	the grade forward of 0.20%at 500ft then the				

Mediur	n Channe	els	Chan Elev			
Channel	Channel	Distance frm	NAVDD88	Lidar	Chan	Hydro Bulb
I.D.	Size	Cnct Chan (ft)	Invert (ft)	(ft) ¹	Slope % ²	Elev Invert (ft)
lsen7c	Medium	250	0.88	3.56	0.15%	
lsen7c	Medium	476	1.21	3.70	0.15%	2.0
lsen7a2	Medium	1250	0.5	5.09	0.10%	
lsen7a2	Medium	1500	0.75	5.24	0.10%	
lsen7a2	Medium	1750	1.00	4.96	0.10%	2.0
lsen4b	Medium	0	-1.00	3.39	0.20%	
lsen4b	Medium	250	-0.50	4.32	0.20%	
lsen4b	Medium	500	-0.25	4.65	0.10%	
Mess2a	Medium	0	-1.00	4.72	0.20%	
Mess2a	Medium	250	-0.50	3.25	0.20%	
Mess2a	Medium	500	0.15	3.61	0.26%	
Mess2a	Medium	750	0.80	2.91	0.26%	
Mess2a	Medium	1000	1.45	2.86	0.26%	
Mess2a	Medium	1146	1.83	2.99	0.26%	
Chis20a	Medium	0	-1.00	3.31	0.20%	
Chis20a	Medium	250	-0.50	3.16	0.20%	
Chis20a	Medium	500	0.13	2.69	0.25%	
Chis20a	Medium	728	0.70	2.92	0.25%	
Chis20c	Small	1130	1.70	2.91	0.25%	
Chis18a	Medium	0	-0.55	3.33	0.25%	1.8
Chis18a	Medium	250	-0.55	3.37	0.00%	
Chis18a	Medium	500	-0.55	3.28	0.00%	
Chis18a	Medium	750	-0.55	3.17	0.00%	
Chis11a	Medium	0	-1.00	4.89	0.20%	
Chis11a	Medium	250	-0.50	2.92	0.20%	1.8
Chis11a	Medium	500	-0.375	2.81	0.05%	
Chis11a	Medium	750	-0.25	3.20	0.05%	
Chis11a	Medium	1000	-0.13	4.60	0.05%	
Chis11a	Medium	1250	0.00	4.75	0.05%	
Chis11a	Medium	1470	0.11	2.70	0.05%	
Chis10a	Medium	0	-1.00	5.64	0.20%	
Chis10a	Medium	250	-0.50	3.00	0.20%	
Chis10a	Medium	500	0.00	3.16	0.20%	
Chis10a	Medium	750	0.50	2.92	0.20%	
1). Elevation of a	general pasture lan	ds adjacent to channe	el point			
	is 0.50% and then 0	the grade forward of 0.20%at 500ft then the				

Mediur	n Channe	els	Chan Elev			
Channel	Channel	Distance frm	NAVDD88	Lidar	Chan	Hydro Bulb
I.D.	Size	Cnct Chan (ft)	Invert (ft)	(ft) ¹	Slope % ²	Elev Invert (ft)
Chis10a	Medium	822	0.64	3.20	0.20%	
Chis14a	Medium	0	-1.00	7.59	0.10%	
Chis14a	Chis14a Medium 250		-0.75	3.24	0.10%	
Chis14a	Medium	500	-0.50	3.55	0.10%	
Chis5d	Medium	0	-0.75	3.49	0.10%	
Chis5d	Medium	250	0.00	4.89	0.30%	
Chis5d	Medium	500	1.25	5.03	0.50%	
Chis5d	Medium	750	2.50	4.93	0.50%	
Chis5d	Medium	895	3.23	5.39	0.50%	
Chis7c	Medium	0	0.00	4.07	0.10%	
Chis7c	Medium	250	0.25	4.27	0.10%	
Chis7c	Medium	500	1.50	4.87	0.50%	2
Chis7c	Medium	750	2.75	5.62	0.50%	
Chis7c	Medium	822	3.11	4.22	0.50%	
Chis7c	Medium	902	3.51	4.79	0.50%	2.0
Chis5b	Medium	0	-0.75	4.13	0.25%	
Chis5b	Medium	250	-0.13	3.33	0.25%	
Chis5b	Medium	275	-0.06	3.71	0.25%	
Chis5b	Medium	433	0.33	3.74	0.25%	
Chis5b	Medium	525	0.79	4.05	0.50%	
Chis5b	Medium	775	2.04	4.45	0.50%	
Chis5b	Medium	837	2.10	4.56	0.10%	
Chis8a	Medium	0	-0.50	3.50	0.20%	
Chis8a	Medium	250	0.00	3.15	0.20%	
Chis8a	Medium	340	0.18	3.59	0.20%	
Chis2g	Medium	0	-0.75	4.19	0.20%	
Chis2g	Medium	250	0.75	4.24	0.60%	
Chis2g	Medium	500	2.25	5.71	0.60%	
Chis2g	Medium	665	3.24	4.81	0.60%	
Chis7a2	Medium	1840	2.76	8.81	2.00%	1.8
Chis7a2	Medium	1980	6.96	9.14	3.00%	
Mess11c	Medium	3750	1.48	4.19	0.20%	
Mess11c	Medium	4000	1.73	~4.5	0.10%	
Mess11d	Small	4732	2.46	4.67	0.10%	
		ds adjacent to channe				
		the grade forward of 0.20%at 500ft then the				

Mediun	n Channe	els	Chan Elev			
Channel	Channel	Distance frm	NAVDD88	Lidar	Chan	Hydro Bulb
I.D.	Size	Cnct Chan (ft)	Invert (ft)	(ft) ¹	Slope % ²	Elev Invert (ft)
ODFW12a	Medium	0	-1.00	3.84	0.20%	1.8
ODFW12a Medium		250	-0.5	2.24	0.20%	
ODFW12a	Medium	500	-0.25	2.50	0.10%	
ODFW12a	Medium	660	-0.09	2.70	0.10%	
ODFW5a	Medium	0	-1.00	3.92	0.10%	
ODFW5a	Medium	250	-0.50	3.40	0.20%	
ODFW5a	Medium	500	-0.25	3.38	0.10%	
ODFW5a	Medium	582	-0.17	3.63	0.10%	
ODFW27b	Medium	0	-0.50	3.38	0.10%	
ODFW27b	Medium	250	-0.25	3.60	0.10%	
ODFW27b	Medium	500	0.00	3.28	0.10%	
ODFW27b	Medium	547	0.05	3.47	0.10%	
Chis4a	Medium	0	-1.00	7.57	0.20%	
Chis4a	Medium	250	-0.50	5.18	0.20%	
Chis4a	Medium	500	0.00	4.65	0.20%	
Chis4a	Medium	750	0.50	3.52	0.20%	
Chis4a	Medium	935	0.87	3.66	0.20%	
Chis17b	Medium	0	-0.75	4.95	0.20%	
Chis17b	Medium	250	-0.25	3.74	0.20%	
Chis17b	Medium	500	0.25	2.94	0.20%	
Chis16b	Medium	0	-0.85	3.71	0.50%	
Chis16b	Medium	250	0.65	4.19	0.60%	
Chis16b	Medium	500	2.15	4.20	0.60%	
Chis16b	Medium	612	2.822	4.69	0.60%	
ODFW3	Medium	0	-1.00	5.51	0.20%	2
ODFW3	Medium	250	-0.50	3.51	0.20%	
ODFW3	Medium	500	-0.25	2.81	0.10%	
ODFW3	Medium	750	0.00	3.31	0.10%	
ODFW3	Medium	905	0.16	4.77	0.10%	
Chis1a	Medium	0	-1.00	7.19	0.20%	
Chis1a	Medium	250	-0.50	4.36	0.20%	
Chis1a	Medium	500	0.25	4.07	0.30%	
Chis1a	Medium	565	0.45	4.17	0.30%	
Chis3a	Medium	0	-1.00	3.11	0.30%	
		ds adjacent to channe				
	-	the grade forward of 0.20%at 500ft then the				

Mediun	n Channe	els	Chan Elev				
Channel	Channel	Distance frm	NAVDD88	Lidar	Chan	Hydro Bulb	
I.D.	Size	Cnct Chan (ft)	Invert (ft)	(ft) ¹	Slope % ²	Elev Invert (ft)	
Chis3a	Medium	250	-0.25	4.27	0.30%		
Chis3a	Medium	450	0.35	3.57	0.30%		
Chis16c	Medium	402	0.21	3.78	0.30%		
Chis16c	Medium	652	0.96	3.82	0.30%		
Chis16c	Medium	813	1.44	4.00	0.30%		
ODFW27a	Medium	0	-1.00	6.08	0.20%		
ODFW27a	Medium	250	-0.50	3.88	0.20%		
ODFW27a	Medium	500	0.00	3.66	0.20%		
ODFW27a	Medium	620	0.24	3.56	0.20%		
ODFW2b	Medium	0	-1.00	2.90	0.20%		
ODFW2b	Medium	260	-0.48	3.24	0.20%		
ODFW2b	Medium	347	-0.31	3.80	0.20%		
ODFW8a	Medium	0	-1.00	3.28	0.20%		
ODFW8a	Medium	250	-0.50	2.76	0.20%		
ODFW8a	Medium	500	-0.25	2.90	0.10%		
ODFW8a	Medium	555	-0.20	3.22	0.10%	2.5	
Chis5d	Medium	805	0.06	5.03	0.10%		
ODFW2a	Medium	0	-0.48	5.19	0.20%		
ODFW2a	Medium	350	0.22	3.08	0.20%		
1). Elevation of g	eneral pasture land	ds adjacent to channe	el point				
	2.) In tables the channel grades are the grade forward of the station. i.e. if the grade at 250 is 0.50% and then 0.20% at 500ft then the grade from 250 to 500 is 0.20%						

Appendix A. Table 1. Continued

Small Ch	annels		Chan Elev			
Channel	Channel	Distance frm	NAVDD88	Lidar	Chan	Hydro Bulb
I.D.	Size	Cnct Chan (ft)	Invert (ft)	(ft) ¹	Slope % ²	Elev Invert (ft)
Mess1b	Small	0	1.57	4.48	0.07%	
Mess1b	Small	250	1.75	3.44	0.07%	
Mess1b	Small	500	1.92	3.69	0.07%	
Mess1b	Small	645	2.02	2.61	0.07%	
Mess13d	Small	0	0.05	2.76	0.17%	2.5
Mess13d	Small	250	0.48	3.05	0.17%	
Mess13d	Small	500	0.90	3.33	0.17%	
Mess13d	Small	750	1.33	3.11	0.17%	
Mess13d	Small	1000	1.75	3.01	0.17%	
Mess13d	Small	1165	2.03	3.22	0.17%	
Mess2b	Small	0	0.35	3.10	0.20%	2.5
Mess2b	Small	250	0.85	3.23	0.20%	
Mess2b	Small	500	1.35	3.37	0.20%	
Mess2b	Small	558	1.47	3.34	0.20%	
Mess13b	Small	0	1.00	2.83	0.20%	2.5
Mess13b	Small	250	1.50	2.82	0.20%	
Mess13b	Small	400	1.80	2.84	0.20%	1.8
Mess3b	Small	0	0.50	3.17	0.20%	
Mess3b	Small	250	1.00	3.02	0.20%	
Mess3b	Small	500	1.50	3.32	0.20%	
Mess3b	Small	573	1.65	3.47	0.20%	
Mess3d	Small	0	1.00	3.35	0.15%	
Mess3d	Small	250	1.38	3.47	0.15%	
Mess3d	Small	500	1.75	3.34	0.15%	
Mess3d	Small	600	1.90	3.19	0.15%	
Mess2c	Small	0	1.90	2.88	0.10%	
Mess2c	Small	265	2.17	3.28	0.10%	2.5
Mess2d	Small	0	2	3.02	0.05%	
Mess2d	Small	250	2.13	3.30	0.05%	
Mess2d	Small	327	2.16	3.08	0.05%	
Mess4b	Small	0	1.25	3.47	0.07%	
Mess4b	Small	250	1.43	3.38	0.07%	2.5
Mess4b	Small	367	1.51	3.44	0.07%	
Mess13d	Small	0	1.12	3.38	0.07%	
1). Elevation of ge	1	s adjacent to channel	point			
	-	negradeforward of th 20%at500ftthentheg				

Small Ch	annels		Chan Elev			
Channel Channel		Distance frm	NAVDD88	Lidar	Chan	Hydro Bulb
I.D.	Size	Cnct Chan (ft)	Invert (ft)	(ft) ¹	Slope % ²	Elev Invert (ft)
Mess13d	Small	250	1.30	3.27	0.07%	
Mess13d	Small	500	1.47	3.36	0.07%	
Mess13d	Small	627	1.58	3.21	0.09%	
Mess13c2	Small	0	0.88	3.91	0.09%	
Mess13c2	Small	275	1.13	3.02	0.09%	
Mess13c3	Small	0	1.22	3.96	0.09%	
Mess13c3	Small	250	1.45	3.78	0.09%	
Mess13c3	Small	500	1.67	3.74	0.09%	
Mess13c3	Small	608	1.77	3.49	0.09%	
Mess13c3b	Small	0	1.22	3.73	0.09%	
Mess13c3b	Small	250	1.45	3.18	0.09%	
Mess13c3b	Small	372	1.55	3.01	0.09%	
Mess4c	Small	0	1.72	3.23	0.05%	
Mess4c	Small	250	1.85	3.73	0.05%	
Mess4c	Small	500	1.97	3.53	0.05%	
Mess4c	Small	746	2.09	3.65	0.05%	
Mess4d	Small	0	1.84	3.89	0.05%	
Mess4d	Small	250	1.97	4.09	0.05%	
Mess4d	Small	500	2.09	3.82	0.05%	
Mess4d	Small	670	2.18	3.42	0.05%	
Mess4e	Small	0	2.00	4.52	0.05%	
Mess4e	Small	250	2.13	3.72	0.05%	
Mess4e	Small	500	2.25	3.52	0.05%	
Mess4e	Small	666	2.33	3.91	0.05%	
Mess12b2	Small	0	1.90	3.89	0.05%	
Mess12b2	Small	250	2.03	4.04	0.05%	
Mess12b2	Small	500	2.15	3.89	0.05%	
Mess12b2	Small	587	2.1935	4.20	0.05%	
Mess12c2	Small	0	1.20	3.58	0.05%	
Mess12c2	Small	250	1.33	3.65	0.05%	+
Mess12c2	Small	500	1.45	3.48	0.05%	
Mess12c2	Small	750	1.58	3.87	0.05%	+
Mess12c2	Small	775	1.59	3.80	0.05%	
Mess12e	Small	0	0.50	3.49	0.07%	
		s adjacent to channel				
	-	negradeforward ofth 20%at500ftthentheg				

Small Ch	annels		Chan Elev			
Channel	Channel	Distance frm	NAVDD88	Lidar	Chan	Hydro Bulb
I.D.	Size	Cnct Chan (ft)	Invert (ft)	(ft) ¹	Slope % ²	Elev Invert (ft)
Mess12e	Small	250	0.68	3.18	0.07%	
Mess12e	Small	500	0.85	3.66	0.07%	
Mess12e	Small	679	0.98	4.17	0.07%	
Mess4f	Small	0	2.50	3.93	0.07%	
Mess4f	Small	250	2.68	3.41	0.07%	
Mess4f	Small	500	2.85	4.27	0.07%	
Mess4f	Small	560	2.89	3.72	0.07%	
Mess12d	Small	0	1.18	3.51	0.07%	
Mess12d	Small	250	1.36	3.29	0.07%	
Mess12d	Small	275	1.37	3.49	0.07%	
Mess12e2	Small	0	1.00	3.22	0.09%	
Mess12e2	Small	148	1.13	3.07	0.09%	
Mess11b	Small	0	1.75	3.79	0.09%	
Mess11b	Small	250	1.98	4.49	0.09%	
Mess11b	Small	500	2.20	4.14	0.09%	
Mess11b	Small	527	2.22	3.95	0.09%	
Mess11c2	Small	0	2.00	4.15	0.10%	
Mess11c2	Small	250	2.25	4.81	0.10%	
Mess11c2	Small	500	2.50	4.23	0.10%	
Mess11c2	Small	750	2.75	4.63	0.10%	
Mess11c2	Small	802	2.802	4.64	0.10%	
Mess11d	Small	0	1.00	4.17	0.20%	
Mess11d	Small	250	1.50	4.54	0.20%	
Mess11d	Small	500	2.00	4.33	0.20%	
Mess11d	Small	666	2.332	4.67	0.20%	
Mess13c	Small	0	1.22	1.95	0.10%	
Mess13c	Small	167	1.39	2.85	0.10%	
Mess3c	Small	0	1.00	2.38	0.10%	
Mess3c	Small	250	1.25	3.31	0.10%	
lsen4a2	Small	730	0.80	3.52	0.28%	
lsen4a2	Small	1033	1.65	3.25	0.28%	
lsen4a2	Small	1170	2.03	4.53	0.28%	
lsen4a2	Small	1333	2.4884	4.62	0.28%	2.5
Chis20c	Small	1000	0.70	3.02	0.80%	
1). Elevation of gen	eral pasture land	s adjacent to channel	point			
	-	ne grade forward of th 20% at 500 ft then the g				

Small Ch	anneis		Chan Elev			
Channel	Channel	Distance frm	NAVDD88	Lidar	Chan	Hydro Bulb
I.D.	Size	Cnct Chan (ft)	Invert (ft)	(ft) ¹	Slope % ²	Elev Invert (ft)
Chis20c	Small	1130	1.74	2.91	0.80%	1.8
lsen8c	Small	0	-0.03	3.85	0.60%	
lsen8c	Small	250	1.97	4.05	0.80%	
lsen8c	Small	529	3.64	4.76	0.60%	
ODFW9a	Small	0	-0.50	4.20	0.10%	
ODFW9a	Small	250	-0.25	2.54	0.10%	
ODFW9a	Small	390	0.03	2.22	0.20%	
Chis11b	Small	0	-0.5	2.86	0.20%	
Chis11b	Small	250	0.75	2.89	0.50%	
Chis11b	Small	500	1.50	2.69	0.30%	
Chis11b	Small	705	2.525	2.85	0.50%	
Chis19d	Small	0	1.10	4.68	0.13%	
Chis19d	Small	250	1.43	3.62	0.13%	
Chis19d	Small	500	1.75	3.52	0.13%	
Chis19d	Small	750	2.075	4.41	0.13%	
Chis19d	Small	860	2.22	3.51	0.13%	
lsen8a2	Small	3345	1.20	3.31	0.17%	
lsen8a2	Small	3595	1.63	3.73	0.17%	
lsen8a2	Small	3845	2.05	3.64	0.17%	
lsen8a2	Small	3995	2.31	3.85	0.17%	2.5
lsen3b	Small	0	-0.50	3.85	0.30%	
lsen3b	Small	250	0.25	3.25	0.30%	
lsen3b	Small	500	1.25	4.31	0.40%	
lsen3b	Small	750	2.25	3.80	0.40%	
Chis3c	Small	0	0.35	3.57	0.35%	
Chis3c	Small	250	1.23	4.88	0.35%	
Chis3c	Small	515	2.15	4.63	0.35%	
Chis2d	Small	0	0.50	4.73	0.35%	
Chis2d	Small	250	1.38	4.77	0.35%	
Chis2d	Small	500	2.25	4.76	0.35%	
Chis2d	Small	645	2.76	4.97	0.35%	
Isen8d	Small	0	0.33	7.25	0.50%	
lsen8d	Small	250	1.58	3.75	0.50%	
Isen8d	Small	500	1.83	3.90	0.10%	
1). Elevation of ge	neral pasture land	s adjacent to channel	point			
		ne grade forward of th 20%at 500ft then the g				

Small Ch	annels		Chan Elev				
Channel	Channel	Distance frm	NAVDD88	Lidar	Chan	Hydro Bulb	
I.D.	Size	Cnct Chan (ft)	Invert (ft)	(ft) ¹	Slope % ²	Elev Invert (ft)	
Isen8d	Small	750	2.08	3.63	0.10%		
Isen8d	Small	850	2.18	3.65	0.10%	2.5	
lsen4b2	Small	750	-0.25	4.15	0.15%		
lsen4b2	Small	1000	1.50	4.18	0.70%		
lsen4b2	Small	1100	2.20	4.29	0.70%		
lsen3c	Small	0	-0.10	4.20	0.45%		
lsen3c	Small	250	1.03	4.31	0.45%		
lsen3c	Small	500	1.9	4.33	0.35%		
lsen3c	Small	635	2.37	4.22	0.35%		
Chis19d1	Small	0	1.43	3.31	0.10%		
Chis19d1	Small	250	1.68	5.23	0.10%		
Chis19d1	Small	500	1.93	3.64	0.10%		
Chis19d1	Small	750	2.18	3.73	0.10%		
Chis19c1	Small	0	1.35	3.35	0.12%		
Chis19c1	Small	250	1.65	3.14	0.12%		
Chis19c1	Small	500	1.95	3.14	0.12%		
Chis19c1	Small	590	2.06	3.14	0.12%		
Chis15b	Small	0	0.88	5.68	0.15%		
Chis15b	Small	250	1.26	3.81	0.15%		
Chis15b	Small	500	1.63	3.71	0.15%		
Chis15b	Small	750	2.005	3.78	0.15%		
Chis15b	Small	915	2.25	3.66	0.15%		
lsen8b	Small	0	-0.38	3.62	0.80%		
lsen8b	Small	250	1.62	4.63	0.80%		
lsen8b	Small	515	2.15	3.83	0.20%		
Mess1c3	Small	0	0.29	3.70	0.90%		
Chis17b2	Small	500	0.25	3.09	0.25%		
Chis17b2	Small	750	0.88	3.14	0.25%		
Chis17b2	Small	1000	1.50	3.83	0.25%		
Chis17b2	Small	1212	2.03	3.82	0.25%		
Chis3b	Small	0	0.35	3.97	0.35%		
Chis3b	Small	250	1.73	4.39	0.55%		
Chis3b	Small	515	3.18	4.91	0.55%		
ODFW3a	Small	0	0	2.71	0.35%		
1). Elevation of ger	neral pasture land	s adjacent to channel	point				
	-	ne grade forward of th 20%at 500ft then the					

Small Ch	annels		Chan Elev			
Channel	Channel	Distance frm	NAVDD88	Lidar	Chan	Hydro Bulb
I.D.	Size	Cnct Chan (ft)	Invert (ft)	(ft) ¹	Slope % ²	Elev Invert (ft)
ODFW3a	Small	250	0.88	2.73	0.35%	
ODFW3a	Small	425	1.49	2.76	0.35%	
Chis14c	Small	0	-0.50	3.41	0.50%	
Chis14c	Small	250	1.00	4.07	0.60%	
Chis14c	Small	450	2.20	4.18	0.60%	
Chis19b1	Small	0	1.90	2.88	0.05%	
Chis19b1	Small	250	2.025	3.20	0.05%	
Chis19b1	Small	280	2.03	3.20	0.02%	
Chis19b2	Small	750	2.13	2.99	0.02%	
Chis19b2	Small	1000	2.18	3.27	0.02%	
Chis19b2	Small	1060	2.19	3.07	0.02%	
Isen7d	Small	0	0.75	5.10	0.30%	
Isen7d	Small	250	1.50	3.72	0.30%	
Isen7d	Small	500	2.00	3.29	0.20%	
Isen7d	Small	560	2.12	3.74	0.20%	
Chis10b	Small	0	-0.50	2.85	0.80%	
Chis10b	Small	250	1.25	2.98	0.70%	
Chis10b	Small	462	1.67	3.29	0.20%	
Chis2f	Small	0	0.00	4.65	0.80%	
Chis2f	Small	250	2.00	4.69	0.80%	
Chis2f	Small	440	3.52	5.86	0.80%	
ODFW12c	Small	0	-0.50	2.32	0.20%	
ODFW12c	Small	250	0	2.33	0.20%	
ODFW12c	Small	345	0.19	2.35	0.20%	
lsen8e	Small	0	-0.25	3.29	0.20%	
lsen8e	Small	250	1.00	4.23	0.50%	
lsen8e	Small	500	1.50	4.27	0.20%	
lsen8e	Small	715	1.93	3.80	0.20%	
lsen1a	Small	0	-0.50	4.97	0.40%	
lsen1a	Small	250	0.50	4.33	0.40%	
lsen1a	Small	345	0.88	4.37	0.40%	
Chis19c2	Small	0	1.35	3.37	0.09%	
Chis19c2	Small	250	1.575	2.58	0.09%	
Chis19c2	Small	420	1.73	3.36	0.09%	
1). Elevation of ger	eral pasture land	s adjacent to channel	point			
		ne grade forward of th 20%at 500ft then the g				

Small Ch	annels		Chan Elev			
Channel	Channel	Distance frm	NAVDD88	Lidar	Chan	Hydro Bulb
I.D.	Size	Cnct Chan (ft)	Invert (ft)	(ft) ¹	Slope % ²	Elev Invert (ft)
Chis14b	Small	0	-0.50	3.64	0.09%	
Chis14b	Small	250	1.5	3.70	0.80%	
Chis14b	Small	415	2.82	4.15	0.80%	
Chis19c3	Small	0	1.35	3.46	0.06%	
Chis19c3	Small	250	1.50	2.80	0.06%	
Chis19c3	Small	500	1.65	3.16	0.06%	
Chis19c3	Small	688	1.76	2.88	0.06%	1.8
Chis12b	Small	0	-0.13	4.00	0.35%	
Chis12b	Small	250	0.75	3.54	0.35%	
Chis12b	Small	500	1.62	3.50	0.35%	
Chis12b	Small	550	1.80	3.14	0.35%	1.8
ODFW12b	Small	0	-0.40	2.24	0.10%	
ODFW12b	Small	250	-0.15	2.27	0.10%	
ODFW12b	Small	400	0	2.69	0.10%	
ODFW8b	Small	0	-0.50	2.34	0.20%	
ODFW8b	Small	250	0.00	2.83	0.20%	
ODFW8b	Small	375	0.25	3.31	0.20%	
ODFW27b	Small	0	0.10	4.08	0.20%	
ODFW27b	Small	250	0.60	3.80	0.20%	
ODFW27b	Small	325	0.75	3.50	0.20%	
Chis2c	Small	0	0.50	4.92	0.90%	
Chis2c	Small	250	2.75	4.72	0.90%	
Chis2c	Small	575	4.05	5.11	0.40%	
Chis1b	Small	815	0.45	3.53	0.60%	
Chis1b	Small	940	1.20	3.72	0.60%	
Chis17b1	Small	250	0.25	3.10	1.00%	
Chis17b1	Small	308	0.83	2.94	1.00%	
Mess2d	Small	0	0.80	3.09	0.20%	
Chis4b	Small	0	0.87	3.83	0.50%	
Chis4b	Small	250	2.12	4.50	0.50%	
Chis4b	Small	325	2.72	4.27	0.80%	
Chis2e	Small	0	0.25	4.76	0.90%	
Chis2e	Small	250	2.50	4.85	0.90%	
Chis2e	Small	309	2.62	4.72	0.20%	
1). Elevation of gen	eral pasture land	s adjacent to channel	point			
	-	ne grade forward of th 20%at 500ft then the g				

Small Cha			Chan Elev			
Channel	Channel	Distance frm	NAVDD88	Lidar	Chan	Hydro Bulb
I.D.	Size	Cnct Chan (ft)	Invert (ft)	(ft) ¹	Slope % ²	Elev Invert (ft)
Chis20d	Small	0	0.13	2.56	0.20%	
Chis20d	Small	250	0.63	3.13	0.20%	
Chis20d	Small	479	1.08	3.01	0.20%	
lsen4c	Small	0	1.50	4.27	0.10%	
lsen4c	Small	250	1.75	4.26	0.10%	
lsen4c	Small	390	1.89	4.40	0.10%	
lsen7c1	Small	726	2.23	3.35	0.10%	
lsen7c1	Small	826	2.33	3.14	0.10%	
ODFW27a2	Small	0	0.24	3.58	0.30%	
ODFW27a2	Small	226	0.92	3.51	0.30%	
Chis5f	Small	0	-0.13	3.80	0.80%	
Chis5f	Small	273	2.06	3.75	0.80%	
lsen8b	Small	0	-0.67	3.51	1.00%	
lsen8b	Small	250	1.83	4.61	1.00%	
lsen8b	Small	515	3.15	4.61?	0.50%	
Chis10c	Small	0	0.40	2.92	0.40%	
Chis10c	Small	250	1.40	3.08	0.40%	
Chis10c	Small	385	1.94	2.92	0.40%	
Chis17c	Small	0	-0.35	4.89	0.90%	
Chis17c	Small	215	1.59	3.76	0.90%	
lsen7a3	Small	1750	1.00	4.76	0.25%	
lsen7a3	Small	2000	1.63	3.75	0.25%	
lsen7a3	Small	2137	1.97	4.27	0.25%	2.0
lsen3d	Small	0	0.70	4.85	1.00%	
lsen3d	Small	200	2.70	4.45	1.00%	
lsen7b	Small	0	1.00	4.82	0.70%	
lsen7b	Small	250	2.75	4.09	0.70%	
chis2b	Small	0	1.50	~4.00	0.90%	
Chis2b	Small	195	3.26	4.93	0.90%	
1). Elevation of gen		s adjacent to channel	point			
,	•	negrade forward of th				
,	•	negradeforward of th 20%at500ft then the g				

APPENDIX B

Culvert and Water Control Structures

http://www.agriexpo.online/prod/watermar industries/product-174233-19232.html

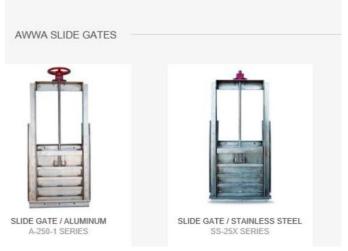
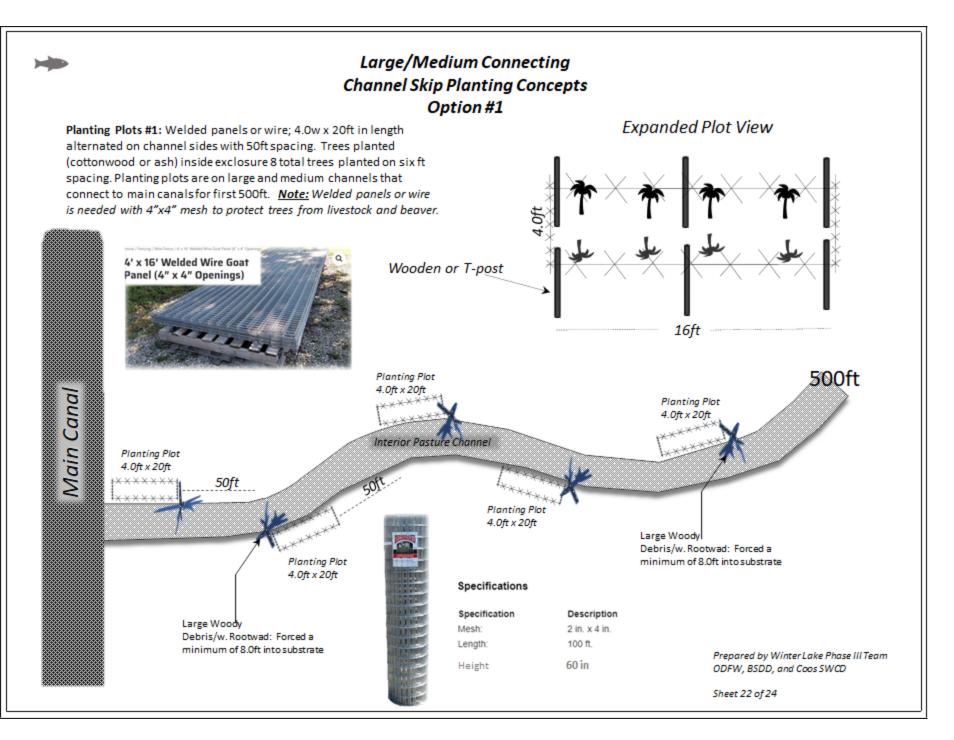
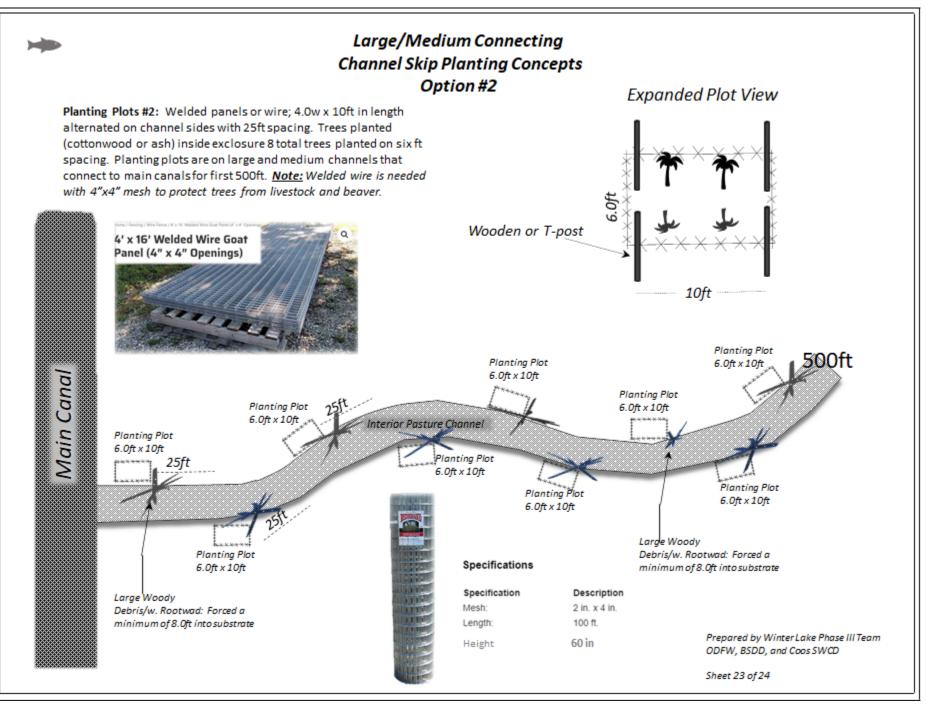
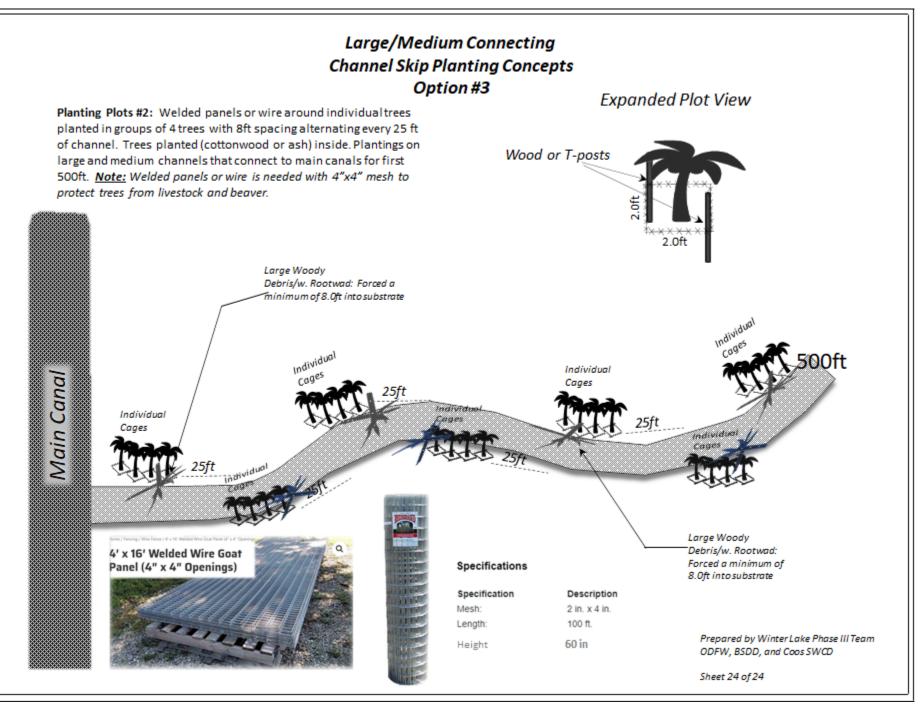


Figure 1. Slide gates proposed for selected interior pasture connection culverts.

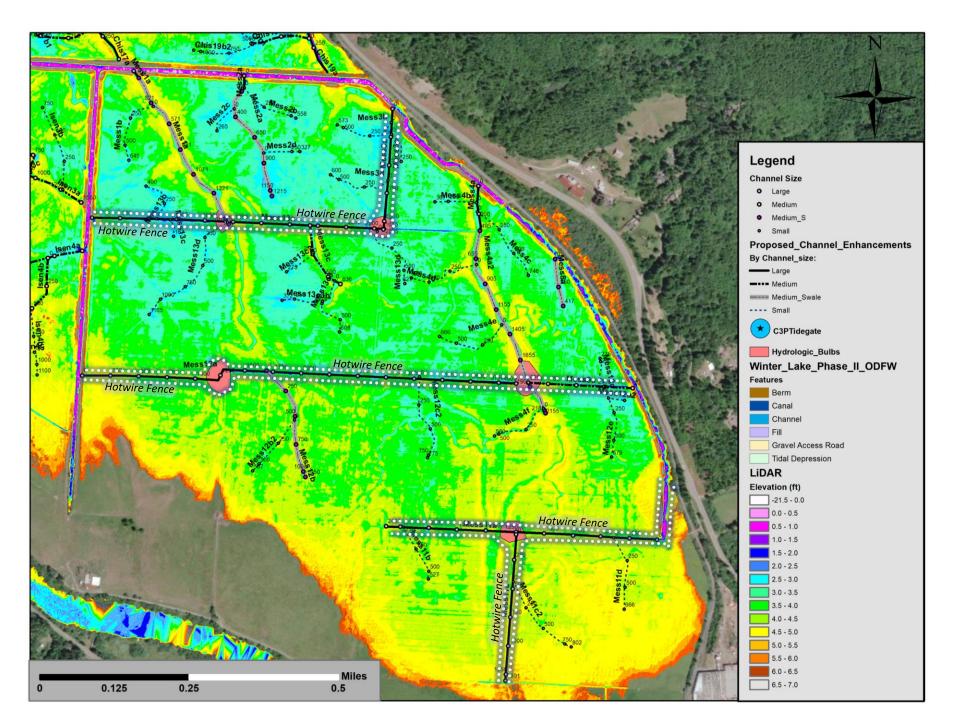

Figure 2. Typical side-hinged aluminum tidegate mounted on 6.0ft CMP.

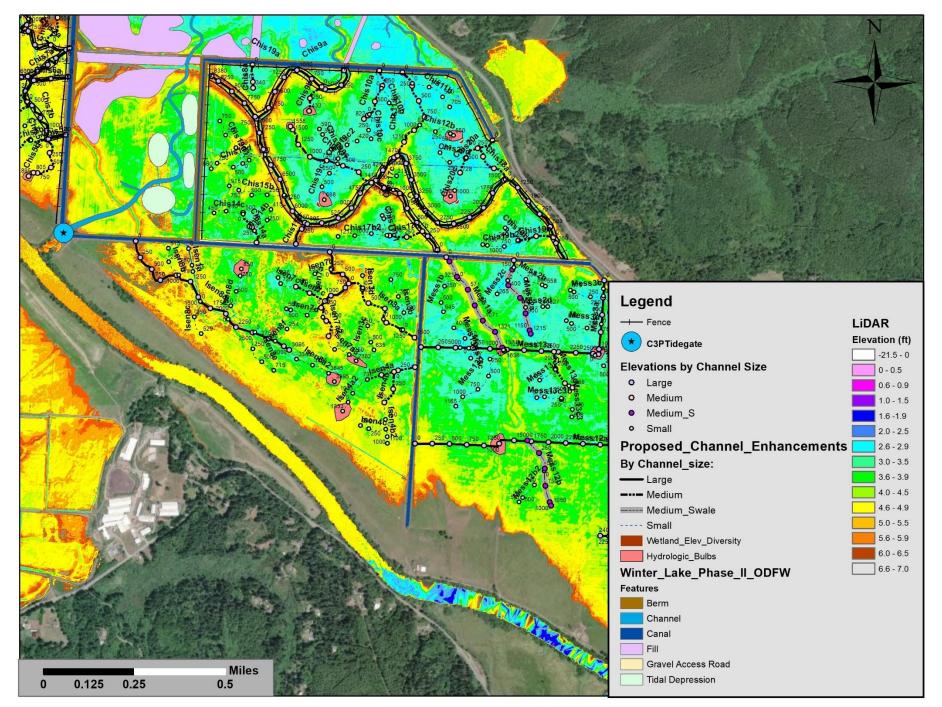


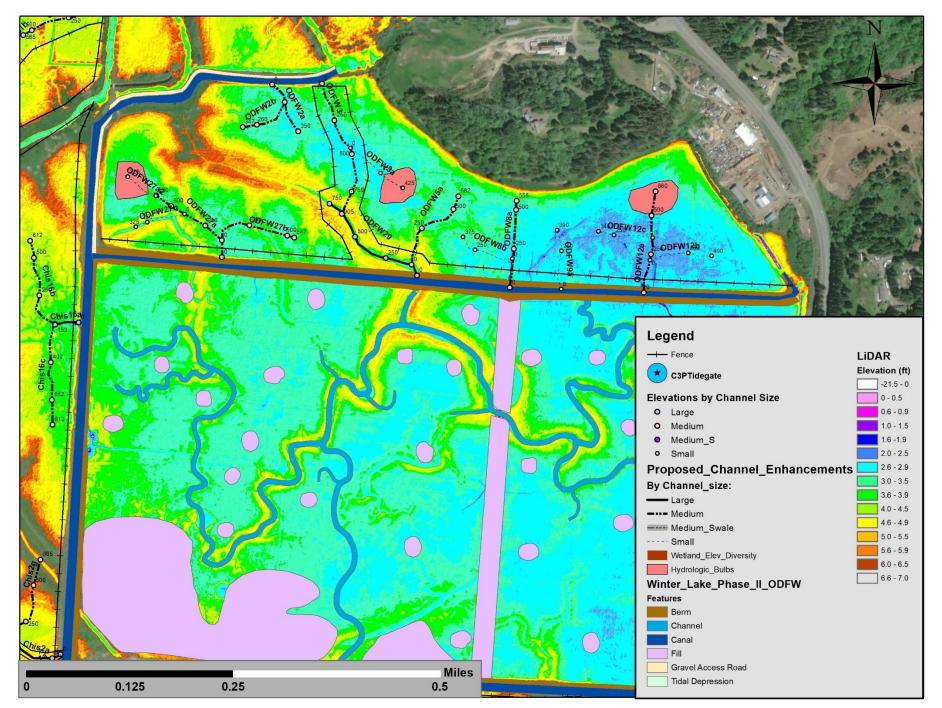

Figure 3. Side-hinged aluminum tidegate door in working location.

APPENDIX C

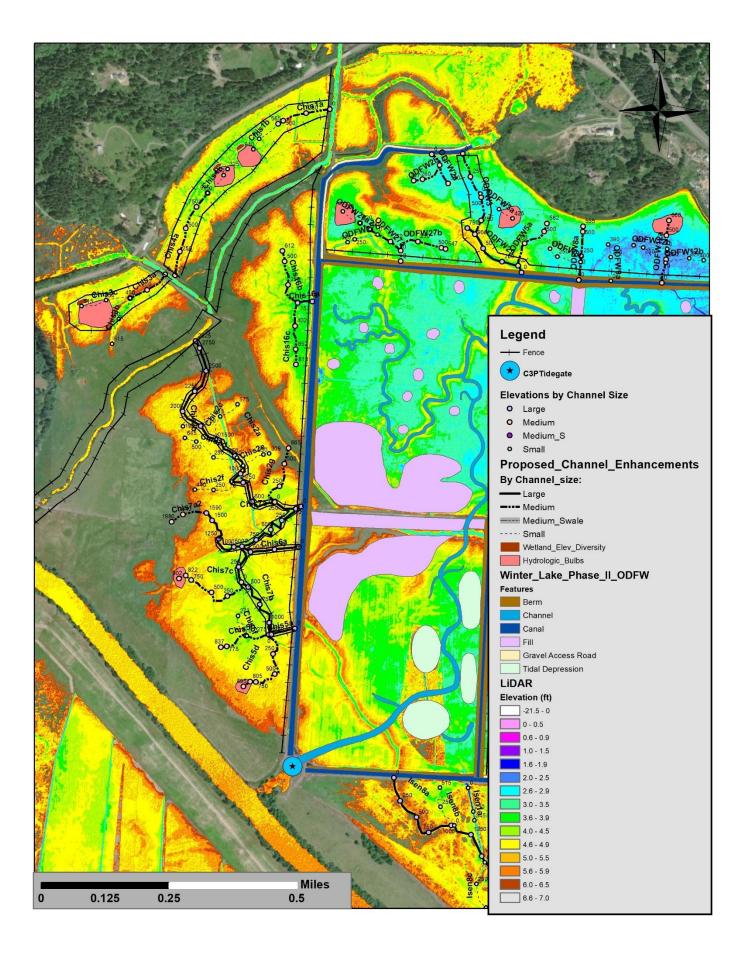
Winter Lake Phase III Planting Concepts and Large Woody Debris Installation




APPENDIX D


Winter Lake Phase III Habitat Uplift Table

Appendix D. Table 1. Winter Lake Phase III project proposed actions and Ecological Uplift assessment.


Action	Impact	Impact to Ecology Time of Construction Yes/No	Severity of Impact High/Med/Low	Healed by Year 2 Yes/No	Net Ecologic Benefit by Yr 3 Yes/No	Benefit Power Power High/Med/Low	Explanation
Installation of new proper sized culverts	Earth Work interior berms	Yes, due to soil disturbance	Low	Yes	Yes, immediate uplift	High	New culverts allow for more natural hydrologic flow of water to interior pasture channels. greatly improved fish passage and wetland function. Net benefit strong much greater than impacts from time zero forward
Channel construction/recon struction; Excavation	Excavation/ soil disturbance	Yes, soil disturbance	Medium	Yes	Yes, immediate uplift	High	New/reconstructed channels provide for more natural hydrologic flow of water to interior pastures, greatly improved fish passage and wetland function. Net benefit much greater than impacts from time zero forward.
Channel construction/recon struction; soil thin- spread	Soil	Yes, plant disturbance, unvegetated soils	Medium	Yes	Neutral by year 3	Neutral by year 3	Soils that are distributed on wetland pastures will be thin- spread on average to 3" in depth; they will be integrated into pasture grasses as wetland plants are fully able to grow through this application fall of year 1 with full healing by year 2.
Channel Reconstruction bank sloping 1:1 and 2:1	Soil disturbance	Yes, soil disturbance	Medium	Yes	Uplift by year 2	Medium	Current pasture drainage channels have vertical banks that lead to bank sloughing and provide little if any edge habitats for fish when winter flows fill channels. Sloping o banks of channels will provide edge for growth of vegetation/fish cover, reduce erosion, and sediments
Construction of Hydrologic Bulbs	Soil disturbance	Yes, soil disturbance	Low	Yes	Yes, imme diate uplift	High	Hydrologic bulbs will be installed at upper reaches of channel networks in selected locations. These bulbs will be excavated to an elevation that during winter months they provide long-term wetted habitat for juvenile coho. These also in arease hydrologic exchange of water, which results in greater flushing of channels during tidal inflow/outflow. This prevents channels from accumulating sediments and provides long term channel life expectancy with little or no reexcavation to "clean" sediment. These bulbs also allow for greater volume capacity of channel networks duriing inflow/outflow events, which provide fo exchange of water in channels and canals improving water quality.
Berm		Yes, soil disturbance	Low	Yes	Neutral by year 3	Neutral by year 3	Locations where berms are reconstructed will be be seeded/mulched. They are expected to be fully revegetated by year by end of growing season year 2.
	Some soil disturbance	Minimal	Very Low	Yes	Yes	Medium	Fencing of selected segments of channels provides immediate benefits to water quality and longer term establishment of riparian vegetative and woody plants fo fish habitat complexity.
Large Woody Debris Installation large channels	Some soil disturbance	Minimal	Very Low	Yes	Yes	High	Installation of LWD rootwads in first 500ft of larger channels will fully provide uplift through providing complexity for fish and other aquatic organisms. Skip planting of trees will be implemented on large and
Planting of Trees on large and selected secondary channels	N/A	N/A	N/A	N/A	N/A	Hlgh	selected medium channels in segments where fence is installed. Additionally, individual caged trees will be planted. Skip planting will be three trees planted in a single 8x8ft plot every 100ft of large channels and selected medium channel reaches (Figure xxx). Tree species will be either Oregon Ash, Black Cottonwood, or Spruce.
			Net Ecolog	ical Benef	fit by Year 1	Medium	

Page 80 of 81

